These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2902957)

  • 1. Human red cell volume regulation in hypotonic media.
    Ellory JC; Hall AC
    Comp Biochem Physiol A Comp Physiol; 1988; 90(4):533-7. PubMed ID: 2902957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swelling-activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than shape.
    Jennings ML; Schulz RK
    Am J Physiol; 1990 Dec; 259(6 Pt 1):C960-7. PubMed ID: 2260643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KCl cotransport in HbAA and HbSS red cells: activation by intracellular acidity and disappearance during maturation.
    Ellory JC; Hall AC; Ody SA; Poli de Figueiredos CE; Chalder S; Stuart J
    Adv Exp Med Biol; 1991; 307():47-57. PubMed ID: 1805601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cl-dependent K transport in a pure population of volume-regulating human erythrocytes.
    O'Neill WC
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C858-64. PubMed ID: 2705517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice.
    Rust MB; Alper SL; Rudhard Y; Shmukler BE; Vicente R; Brugnara C; Trudel M; Jentsch TJ; Hübner CA
    J Clin Invest; 2007 Jun; 117(6):1708-17. PubMed ID: 17510708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for chloride-dependent volume reduction in macrocytic sheep reticulocytes.
    Lauf PK; Bauer J
    Biochem Biophys Res Commun; 1987 Apr; 144(2):849-55. PubMed ID: 3579945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems.
    Motais R; Guizouarn H; Garcia-Romeu F
    Biochim Biophys Acta; 1991 Oct; 1075(2):169-80. PubMed ID: 1657175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of oxygenation upon the Cl-dependent K flux pathway in equine red cells.
    Honess NA; Gibson JS; Cossins AR
    Pflugers Arch; 1996 Jun; 432(2):270-7. PubMed ID: 8662303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxygenation of sickle red blood cells stimulates KCl cotransport without affecting Na+/H+ exchange.
    Joiner CH; Jiang M; Fathallah H; Giraud F; Franco RS
    Am J Physiol; 1998 Jun; 274(6):C1466-75. PubMed ID: 9696688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport.
    Adorante JS; Cala PM
    J Gen Physiol; 1987 Aug; 90(2):209-27. PubMed ID: 3655717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells.
    Gillen CM; Forbush B
    Am J Physiol; 1999 Feb; 276(2):C328-36. PubMed ID: 9950760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+,Cl- cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).
    Hoffmann EK; Sjøholm C; Simonsen LO
    J Membr Biol; 1983; 76(3):269-80. PubMed ID: 6100866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of nitrite, a nitric oxide derivative, in K-Cl cotransport activation of low-potassium sheep red blood cells.
    Adragna NC; Lauf PK
    J Membr Biol; 1998 Dec; 166(3):157-67. PubMed ID: 9843589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swelling-activated K-Cl cotransport: metabolic dependence and inhibition by vanadate and fluoride.
    O'Neill WC
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C308-15. PubMed ID: 1847586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide.
    Jennings ML; Schulz RK
    J Gen Physiol; 1991 Apr; 97(4):799-817. PubMed ID: 1647439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human neonatal red cells. Regulatory volume response under anisotonic conditions.
    Serrani RE; Gioia IA; Corchs JL
    Arch Int Physiol Biochim Biophys; 1991 Dec; 99(6):473-7. PubMed ID: 1725753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between erythrocyte volume and sodium transport in the Milan hypertensive rat and age-dependent changes.
    Ferrari P; Ferrandi M; Torielli L; Canessa M; Bianchi G
    J Hypertens; 1987 Apr; 5(2):199-206. PubMed ID: 3611769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative activation of K-Cl cotransport by diamide in erythrocytes from humans with red cell disorders, and from several other mammalian species.
    Adragna NC; Lauf PK
    J Membr Biol; 1997 Feb; 155(3):207-17. PubMed ID: 9050444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP; Nazaret C; Hannaert PA; Cragoe EJ
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-dependent K+ fluxes in sheep red cells.
    Campbell EH; Gibson JS
    J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):679-88. PubMed ID: 9503330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.