These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 29029703)
1. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Zaccaron AZ; Woloshuk CP; Bluhm BH Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703 [TBL] [Abstract][Full Text] [Related]
2. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Wicklow DT; Rogers KD; Dowd PF; Gloer JB Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311 [TBL] [Abstract][Full Text] [Related]
3. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
4. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
5. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Wicklow DT; Jordan AM; Gloer JB Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415 [TBL] [Abstract][Full Text] [Related]
6. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Naumann TA; Wicklow DT Phytopathology; 2010 Jul; 100(7):645-54. PubMed ID: 20528182 [TBL] [Abstract][Full Text] [Related]
7. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335 [TBL] [Abstract][Full Text] [Related]
8. Genetic Diversity of Stenocarpella maydis in the Major Corn Production Areas of the United States. Romero Luna MP; Aime MC; Chilvers MI; Wise KA Plant Dis; 2017 Dec; 101(12):2020-2026. PubMed ID: 30677369 [TBL] [Abstract][Full Text] [Related]
9. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth. Bluhm BH; Dhillon B; Lindquist EA; Kema GH; Goodwin SB; Dunkle LD BMC Genomics; 2008 Nov; 9():523. PubMed ID: 18983654 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Wicklow DT; Poling SM Phytopathology; 2009 Jan; 99(1):109-15. PubMed ID: 19055442 [TBL] [Abstract][Full Text] [Related]
11. Infection and ultrastructure of conidia and pycnidia of Stenocarpella maydis in maize. Xia Z; Wu H; Achar PN J Food Prot; 2011 Apr; 74(4):676-80. PubMed ID: 21477487 [TBL] [Abstract][Full Text] [Related]
12. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance. Chalivendra SC; DeRobertis C; Chang PK; Damann KE Mol Plant Microbe Interact; 2017 May; 30(5):361-373. PubMed ID: 28447887 [TBL] [Abstract][Full Text] [Related]
13. Identification of a 12-gene Fusaric Acid Biosynthetic Gene Cluster in Fusarium Species Through Comparative and Functional Genomics. Brown DW; Lee SH; Kim LH; Ryu JG; Lee S; Seo Y; Kim YH; Busman M; Yun SH; Proctor RH; Lee T Mol Plant Microbe Interact; 2015 Mar; 28(3):319-32. PubMed ID: 25372119 [TBL] [Abstract][Full Text] [Related]
14. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Brown DW; Busman M; Proctor RH Mol Plant Microbe Interact; 2014 Aug; 27(8):809-23. PubMed ID: 24742071 [TBL] [Abstract][Full Text] [Related]
15. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126 [TBL] [Abstract][Full Text] [Related]
16. Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus. Gao S; Li Y; Gao J; Suo Y; Fu K; Li Y; Chen J BMC Genomics; 2014 Jul; 15(1):627. PubMed ID: 25056288 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Ge C; Tang C; Zhu YX; Wang GF Gene; 2021 Jan; 764():145078. PubMed ID: 32858175 [TBL] [Abstract][Full Text] [Related]
18. Draft Genome Sequence Resource for Telenko DEP; Ross TJ; Shim S; Wang Q; Singh R Mol Plant Microbe Interact; 2020 Jul; 33(7):884-887. PubMed ID: 32233960 [No Abstract] [Full Text] [Related]
19. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. Desjardins AE; Busman M; Manandhar G; Jarosz AM; Manandhar HK; Proctor RH J Agric Food Chem; 2008 Jul; 56(13):5428-36. PubMed ID: 18533662 [TBL] [Abstract][Full Text] [Related]
20. Stability of Resistance of Maize to Ear Rots ( Mesterhazy A; Szabo B; Szieberth D; Tóth S; Nagy Z; Meszlenyi T; Herczig B; Berenyi A; Tóth B Toxins (Basel); 2024 Sep; 16(9):. PubMed ID: 39330848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]