These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29029740)

  • 1. A quantitative homogeneous assay for global DNA methylation levels using CpG-binding domain- and methyl-CpG-binding domain-fused luciferase.
    Yoshida W; Baba Y; Banzawa K; Karube I
    Anal Chim Acta; 2017 Oct; 990():168-173. PubMed ID: 29029740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescence Resonance Energy Transfer for Global DNA Methylation Quantification.
    Taka N; Baba Y; Iwasaki Y; Yoshida W
    Methods Mol Biol; 2022; 2525():267-279. PubMed ID: 35836075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation.
    Baba Y; Yamamoto K; Yoshida W
    Anal Bioanal Chem; 2019 Jul; 411(19):4765-4773. PubMed ID: 30659325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global DNA Methylation Detection System Using MBD-Fused Luciferase Based on Bioluminescence Resonance Energy Transfer Assay.
    Yoshida W; Baba Y; Karube I
    Anal Chem; 2016 Sep; 88(18):9264-8. PubMed ID: 27541340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal Design of Luciferase Fusion Proteins for Epigenetic Modifications Detection Based on Bioluminescence Resonance Energy Transfer.
    Miyata T; Shimamura H; Asano R; Yoshida W
    Anal Chem; 2023 Feb; 95(7):3799-3805. PubMed ID: 36748925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybridization-based CpG methylation level detection using methyl-CpG-binding domain-fused luciferase.
    Goto A; Yoshida W
    Anal Bioanal Chem; 2023 May; 415(12):2329-2337. PubMed ID: 36961575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Global DNA Hydroxymethylation Level Using UHRF2 SRA-Luciferase Based on Bioluminescence Resonance Energy Transfer.
    Taka N; Asami S; Sakamoto M; Matsui T; Yoshida W
    Anal Chem; 2022 Jun; 94(24):8618-8624. PubMed ID: 35657260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a method to measure DNA methylation levels by using methyl CpG-binding protein and luciferase-fused zinc finger protein.
    Hiraoka D; Yoshida W; Abe K; Wakeda H; Hata K; Ikebukuro K
    Anal Chem; 2012 Oct; 84(19):8259-64. PubMed ID: 22924825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of histone modification by chromatin immunoprecipitation combined zinc finger luciferase-based bioluminescence resonance energy transfer assay.
    Yoshida W; Kezuka A; Abe K; Wakeda H; Nakabayashi K; Hata K; Ikebukuro K
    Anal Chem; 2013 Jul; 85(13):6485-90. PubMed ID: 23725053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of CpG methylation level using methyl-CpG-binding domain-fused fluorescent protein.
    Fujita M; Goto M; Tanaka M; Yoshida W
    Anal Methods; 2023 May; 15(19):2294-2299. PubMed ID: 37010025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1.
    Fujita N; Shimotake N; Ohki I; Chiba T; Saya H; Shirakawa M; Nakao M
    Mol Cell Biol; 2000 Jul; 20(14):5107-18. PubMed ID: 10866667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias.
    Nair SS; Coolen MW; Stirzaker C; Song JZ; Statham AL; Strbenac D; Robinson MD; Clark SJ
    Epigenetics; 2011 Jan; 6(1):34-44. PubMed ID: 20818161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection.
    Long HK; Blackledge NP; Klose RJ
    Biochem Soc Trans; 2013 Jun; 41(3):727-40. PubMed ID: 23697932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylation-dependent and -independent genomic targeting principles of the MBD protein family.
    Baubec T; Ivánek R; Lienert F; Schübeler D
    Cell; 2013 Apr; 153(2):480-92. PubMed ID: 23582333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein.
    Lee J; Yoshida W; Abe K; Nakabayashi K; Wakeda H; Hata K; Marquette CA; Blum LJ; Sode K; Ikebukuro K
    Biosens Bioelectron; 2017 Jul; 93():118-123. PubMed ID: 27666367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins.
    Zemach A; Grafi G
    Plant J; 2003 Jun; 34(5):565-72. PubMed ID: 12787239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The methyl-CpG binding domain and the evolving role of DNA methylation in animals.
    Hendrich B; Tweedie S
    Trends Genet; 2003 May; 19(5):269-77. PubMed ID: 12711219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl-CpG-binding domain proteins: readers of the epigenome.
    Du Q; Luu PL; Stirzaker C; Clark SJ
    Epigenomics; 2015; 7(6):1051-73. PubMed ID: 25927341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains.
    Jørgensen HF; Ben-Porath I; Bird AP
    Mol Cell Biol; 2004 Apr; 24(8):3387-95. PubMed ID: 15060159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study of the recognition of dimethylated CpG sites by MBD1 protein.
    Bianchi C; Zangi R
    J Chem Inf Model; 2015 Mar; 55(3):636-44. PubMed ID: 25658035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.