These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 29029932)
41. Improved reporter ion assignment of raw isobaric stable isotope labeled liquid chromatography/matrix-assisted laser desorption/ionization tandem time-of-flight mass spectral data for quantitative proteomics. Jakoby T; Tholey A; van den Berg BH Rapid Commun Mass Spectrom; 2012 Dec; 26(23):2777-85. PubMed ID: 23124669 [TBL] [Abstract][Full Text] [Related]
42. O-GlcNAcylation of amyloid-β precursor protein at threonine 576 residue regulates trafficking and processing. Chun YS; Kwon OH; Chung S Biochem Biophys Res Commun; 2017 Aug; 490(2):486-491. PubMed ID: 28624365 [TBL] [Abstract][Full Text] [Related]
43. Regulatory O-GlcNAcylation sites on FoxO1 are yet to be identified. Fardini Y; Perez-Cervera Y; Camoin L; Pagesy P; Lefebvre T; Issad T Biochem Biophys Res Commun; 2015 Jun; 462(2):151-8. PubMed ID: 25944660 [TBL] [Abstract][Full Text] [Related]
44. Chemoproteomic Profiling of O-GlcNAcylation in Qin W; Xie Z; Wang J; Ou G; Wang C; Chen X Biochemistry; 2020 Sep; 59(34):3129-3134. PubMed ID: 31682414 [TBL] [Abstract][Full Text] [Related]
45. Isobaric protein and peptide quantification: perspectives and issues. Treumann A; Thiede B Expert Rev Proteomics; 2010 Oct; 7(5):647-53. PubMed ID: 20973638 [TBL] [Abstract][Full Text] [Related]
46. A new tandem enrichment strategy for the simultaneous profiling of Fan Z; Li J; Liu T; Zhang Z; Qin W; Qian X Analyst; 2021 Feb; 146(4):1188-1197. PubMed ID: 33465208 [TBL] [Abstract][Full Text] [Related]
47. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Khidekel N; Ficarro SB; Peters EC; Hsieh-Wilson LC Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13132-7. PubMed ID: 15340146 [TBL] [Abstract][Full Text] [Related]
48. Quantitative and Site-Specific Chemoproteomic Profiling of Protein O-GlcNAcylation in the Cell Cycle. Liu J; Hao Y; He Y; Li X; Sun DE; Zhang Y; Yang PY; Chen X ACS Chem Biol; 2021 Oct; 16(10):1917-1923. PubMed ID: 34161081 [TBL] [Abstract][Full Text] [Related]
49. Metabolic Labeling for the Visualization and Identification of Potentially O-GlcNAc-Modified Proteins. Pedowitz NJ; Zaro BW; Pratt MR Curr Protoc Chem Biol; 2020 Jun; 12(2):e81. PubMed ID: 32289208 [TBL] [Abstract][Full Text] [Related]
50. Comparative evaluation of two isobaric labeling tags, DiART and iTRAQ. Chen Z; Wang Q; Lin L; Tang Q; Edwards JL; Li S; Liu S Anal Chem; 2012 Mar; 84(6):2908-15. PubMed ID: 22404494 [TBL] [Abstract][Full Text] [Related]
51. Tools for probing and perturbing O-GlcNAc in cells and in vivo. Cecioni S; Vocadlo DJ Curr Opin Chem Biol; 2013 Oct; 17(5):719-28. PubMed ID: 23906602 [TBL] [Abstract][Full Text] [Related]
52. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Gurcel C; Vercoutter-Edouart AS; Fonbonne C; Mortuaire M; Salvador A; Michalski JC; Lemoine J Anal Bioanal Chem; 2008 Apr; 390(8):2089-97. PubMed ID: 18369606 [TBL] [Abstract][Full Text] [Related]
53. Combining Selective Enrichment and a Boosting Approach to Globally and Site-Specifically Characterize Protein Co-translational Xu S; Yin K; Wu R Anal Chem; 2023 Mar; 95(9):4371-4380. PubMed ID: 36802545 [TBL] [Abstract][Full Text] [Related]
54. Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. Qin K; Zhu Y; Qin W; Gao J; Shao X; Wang YL; Zhou W; Wang C; Chen X ACS Chem Biol; 2018 Aug; 13(8):1983-1989. PubMed ID: 30059200 [TBL] [Abstract][Full Text] [Related]
55. Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. Whelan SA; Hart GW Circ Res; 2003 Nov; 93(11):1047-58. PubMed ID: 14645135 [TBL] [Abstract][Full Text] [Related]
56. Apart From Rhoptries, Identification of Aquino-Gil MO; Kupferschmid M; Shams-Eldin H; Schmidt J; Yamakawa N; Mortuaire M; Krzewinski F; Hardivillé S; Zenteno E; Rolando C; Bray F; Pérez Campos E; Dubremetz JF; Perez-Cervera Y; Schwarz RT; Lefebvre T Front Endocrinol (Lausanne); 2018; 9():450. PubMed ID: 30177911 [No Abstract] [Full Text] [Related]
57. Simultaneous detection and identification of O-GlcNAc-modified glycoproteins using liquid chromatography-tandem mass spectrometry. Haynes PA; Aebersold R Anal Chem; 2000 Nov; 72(21):5402-10. PubMed ID: 11080893 [TBL] [Abstract][Full Text] [Related]
58. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins. Kubota Y; Fujioka K; Takekawa M PLoS One; 2017; 12(7):e0180714. PubMed ID: 28686627 [TBL] [Abstract][Full Text] [Related]
59. Multiplexed Detection of O-GlcNAcome, Phosphoproteome, and Whole Proteome within the Same Gel. Cieniewski-Bernard C; Dupont E; Deracinois B; Lambert M; Bastide B Front Endocrinol (Lausanne); 2014; 5():184. PubMed ID: 25389416 [TBL] [Abstract][Full Text] [Related]
60. Tandem lectin weak affinity chromatography for glycoprotein enrichment. Ma ZY; Skorobogatko Y; Vosseller K Methods Mol Biol; 2013; 951():21-31. PubMed ID: 23296521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]