These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 290302)
41. [Impedance loci of the giant squid axon during transient and constant conditions]. Tada M Shigaku; 1986 Dec; 74(5):1132-45. PubMed ID: 3469585 [No Abstract] [Full Text] [Related]
42. [Effect on the resistance and capacitance of the giant squid axon using an alternating amplitude potential]. Hayakawa T Shigaku; 1986 Oct; 74(4):796-811. PubMed ID: 3467277 [No Abstract] [Full Text] [Related]
43. [Effect of alternating current and amplitude on the transient and constant electrical phenomena of the giant squid axon]. Miyata H Shigaku; 1986 Dec; 74(5):1072-108. PubMed ID: 3469583 [No Abstract] [Full Text] [Related]
44. [Impedance, resistance and capacitance of the giant squid axon and of platinum electrodes]. Ikeda T Shigaku; 1986 Aug; 74(2):488-501. PubMed ID: 3467270 [No Abstract] [Full Text] [Related]
45. Origin of resting potential of axon membrane. Aono O; Oki S J Theor Biol; 1972 Nov; 37(2):273-82. PubMed ID: 4652941 [No Abstract] [Full Text] [Related]
46. Induced inactivation of the potassium permeability of squid axon membranes. Armstrong CM Nature; 1968 Sep; 219(5160):1262-3. PubMed ID: 5677423 [No Abstract] [Full Text] [Related]
47. DISCUSSION REPORT: NEWER PROPERTIES OF PERFUSED SQUID AXONS. SJODIN RA J Gen Physiol; 1965 May; 48():SUPPL:83-92. PubMed ID: 14326142 [No Abstract] [Full Text] [Related]
48. Currents related to movement of the gating particles of the sodium channels. Armstrong CM; Bezanilla F Nature; 1973 Apr; 242(5398):459-61. PubMed ID: 4700900 [No Abstract] [Full Text] [Related]
49. [Transient alternating current in the giant squid axon]. Kobayashi K Shigaku; 1986 Aug; 74(2):476-87. PubMed ID: 3467269 [No Abstract] [Full Text] [Related]
51. Immobilisation of gating charge by a substance that simulates inactivation. Yeh JZ; Armstrong CM Nature; 1978 Jun; 273(5661):387-9. PubMed ID: 661950 [No Abstract] [Full Text] [Related]
52. Multilayered structure of the squid axons membrane revealed by conductance measurements. Watanabe A; Nagano M Brain Res Bull; 1979; 4(1):193-4. PubMed ID: 466500 [No Abstract] [Full Text] [Related]
53. White noise measurement of squid axon membrane impedance. Guttman R; Feldman L Biochem Biophys Res Commun; 1975 Nov; 67(1):427-32. PubMed ID: 1201032 [No Abstract] [Full Text] [Related]
54. Extrinsic charge movement in the squid axon membrane. Effect of pressure and temperature. Benz R; Conti F; Fioravanti R Eur Biophys J; 1984; 11(1):51-9. PubMed ID: 6468344 [TBL] [Abstract][Full Text] [Related]
56. Quantitative analysis of activation and inactivation of asymmetry currents in biological membranes, based on a conformational transition model. Schwarz G J Membr Biol; 1978 Oct; 43(2-3):149-67. PubMed ID: 712814 [TBL] [Abstract][Full Text] [Related]
57. On the admittance of membranes associated with channel conduction. Application to channels at non-equilibrium steady state. Chen Y J Theor Biol; 1979 Dec; 81(4):633-44. PubMed ID: 537392 [No Abstract] [Full Text] [Related]
58. On the theory of ion transport across the nerve membrane, VII. Cooperativity between channels of a large square lattice. Chen YD; Hill TL Proc Natl Acad Sci U S A; 1973 Jan; 70(1):62-5. PubMed ID: 4509665 [TBL] [Abstract][Full Text] [Related]
59. The admittance of the squid giant axon at radio frequencies and its relation to membrane structure. Haydon DA; Urban BW J Physiol; 1985 Mar; 360():275-91. PubMed ID: 3989718 [TBL] [Abstract][Full Text] [Related]
60. Adaptation and accommodation in the squid axon. Fohlmeister JF Biol Cybern; 1975; 18(1):49-60. PubMed ID: 1182227 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]