These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29030273)

  • 1. Heterologous production of myxobacterial α-pyrone antibiotics in Myxococcus xanthus.
    Sucipto H; Pogorevc D; Luxenburger E; Wenzel SC; Müller R
    Metab Eng; 2017 Nov; 44():160-170. PubMed ID: 29030273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production optimization and biosynthesis revision of corallopyronin A, a potent anti-filarial antibiotic.
    Pogorevc D; Panter F; Schillinger C; Jansen R; Wenzel SC; Müller R
    Metab Eng; 2019 Sep; 55():201-211. PubMed ID: 31340171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring chemical diversity of α-pyrone antibiotics: molecular basis of myxopyronin biosynthesis.
    Sucipto H; Wenzel SC; Müller R
    Chembiochem; 2013 Sep; 14(13):1581-9. PubMed ID: 23983106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis and Heterologous Production of Argyrins.
    Pogorevc D; Tang Y; Hoffmann M; Zipf G; Bernauer HS; Popoff A; Steinmetz H; Wenzel SC
    ACS Synth Biol; 2019 May; 8(5):1121-1133. PubMed ID: 30995838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced mutasynthesis studies on the natural α-pyrone antibiotic myxopyronin from Myxococcus fulvus.
    Sahner JH; Sucipto H; Wenzel SC; Groh M; Hartmann RW; Müller R
    Chembiochem; 2015 Apr; 16(6):946-53. PubMed ID: 25757034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The groEL2 gene, but not groEL1, is required for biosynthesis of the secondary metabolite myxovirescin in Myxococcus xanthus DK1622.
    Wang Y; Li X; Zhang W; Zhou X; Li YZ
    Microbiology (Reading); 2014 Mar; 160(Pt 3):488-495. PubMed ID: 24425771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homospermidine Lipids: A Compound Class Specifically Formed during Fruiting Body Formation of Myxococcus xanthus DK1622.
    Hoffmann M; Auerbach D; Panter F; Hoffmann T; Dorrestein PC; Müller R
    ACS Chem Biol; 2018 Jan; 13(1):273-280. PubMed ID: 29185703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myxobacteria--'microbial factories' for the production of bioactive secondary metabolites.
    Wenzel SC; Müller R
    Mol Biosyst; 2009 Jun; 5(6):567-74. PubMed ID: 19462013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Constitutive Promoters for the Elicitation of Secondary Metabolites in Myxobacteria.
    Hu WF; Niu L; Yue XJ; Zhu LL; Hu W; Li YZ; Wu C
    ACS Synth Biol; 2021 Nov; 10(11):2904-2909. PubMed ID: 34757714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity.
    Krug D; Zurek G; Revermann O; Vos M; Velicer GJ; Müller R
    Appl Environ Microbiol; 2008 May; 74(10):3058-68. PubMed ID: 18378661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global gene expression analysis of the Myxococcus xanthus developmental time course.
    Sharma G; Yao AI; Smaldone GT; Liang J; Long M; Facciotti MT; Singer M
    Genomics; 2021 Jan; 113(1 Pt 1):120-134. PubMed ID: 33276008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing in Model Strain
    Yang YJ; Singh RP; Lan X; Zhang CS; Li YZ; Li YQ; Sheng DH
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30404219
    [No Abstract]   [Full Text] [Related]  

  • 14. Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus.
    Yang YJ; Singh RP; Lan X; Zhang CS; Sheng DH; Li YQ
    Microb Cell Fact; 2019 Jul; 18(1):123. PubMed ID: 31291955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of heterologous Darobactin A expression and identification of the minimal biosynthetic gene cluster.
    Wuisan ZG; Kresna IDM; Böhringer N; Lewis K; Schäberle TF
    Metab Eng; 2021 Jul; 66():123-136. PubMed ID: 33872780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering.
    Tu Q; Herrmann J; Hu S; Raju R; Bian X; Zhang Y; Müller R
    Sci Rep; 2016 Feb; 6():21066. PubMed ID: 26875499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aadA gene of plasmid R100 confers resistance to spectinomycin and streptomycin in Myxococcus xanthus.
    Magrini V; Creighton C; White D; Hartzell PL; Youderian P
    J Bacteriol; 1998 Dec; 180(24):6757-60. PubMed ID: 9852026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans-acting regulation of antibiotic TA genes in Myxococcus xanthus.
    Varon M; Paitan Y; Rosenberg E
    FEMS Microbiol Lett; 1997 Oct; 155(2):141-6. PubMed ID: 9351195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Guided Discovery of the Myxobacterial Thiolactone-Containing Sorangibactins.
    Gao Y; Walt C; Bader CD; Müller R
    ACS Chem Biol; 2023 Apr; 18(4):924-932. PubMed ID: 37014749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myxococcus xanthus truncated globin HbO: in silico analysis and functional characterization.
    Singh SK; Kaur R; Kumar A; Kaur R
    Mol Biol Rep; 2019 Apr; 46(2):2101-2110. PubMed ID: 30729391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.