BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29030306)

  • 21. An
    Yeo M; Chae S; Kim G
    Theranostics; 2021; 11(7):3331-3347. PubMed ID: 33537090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering.
    Dai X; Kathiria K; Huang YC
    Biofabrication; 2014 Sep; 6(3):035005. PubMed ID: 24758872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust fabrication of electrospun-like polymer mats to direct cell behaviour.
    Ballester-Beltrán J; Lebourg M; Capella H; Diaz Lantada A; Salmerón-Sánchez M
    Biofabrication; 2014 Sep; 6(3):035009. PubMed ID: 24867823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells.
    Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG
    Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication.
    Jun I; Han HS; Edwards JR; Jeon H
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29509688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture.
    Ye L; Cao J; Chen L; Geng X; Zhang AY; Guo LR; Gu YQ; Feng ZG
    J Biomed Mater Res A; 2015 Dec; 103(12):3863-71. PubMed ID: 26123627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers.
    Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y
    J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Use of Electrospinning Technique on Osteochondral Tissue Engineering.
    Casanova MR; Reis RL; Martins A; Neves NM
    Adv Exp Med Biol; 2018; 1058():247-263. PubMed ID: 29691825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft.
    Centola M; Rainer A; Spadaccio C; De Porcellinis S; Genovese JA; Trombetta M
    Biofabrication; 2010 Mar; 2(1):014102. PubMed ID: 20811117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges.
    Choi W; Lee S; Kim SH; Jang JH
    Macromol Biosci; 2016 Jun; 16(6):824-35. PubMed ID: 26855375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-layered electrospinning and electrospraying approach: Effect of polymeric supplements on chondrocyte suspension.
    Semitela Â; Leal Pereira A; Sousa C; Mendes AF; Marques PAAP; Completo A
    J Biomater Appl; 2022 Apr; 36(9):1629-1640. PubMed ID: 34970927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications.
    Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB
    J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication.
    Semitela Â; Ramalho G; Capitão A; Sousa C; Mendes AF; Aap Marques P; Completo A
    J Tissue Eng; 2022; 13():20417314211069342. PubMed ID: 35024136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.
    Maleki M; Natalello A; Pugliese R; Gelain F
    Acta Biomater; 2017 Mar; 51():268-278. PubMed ID: 28093364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation.
    Yang X; Shah JD; Wang H
    Tissue Eng Part A; 2009 Apr; 15(4):945-56. PubMed ID: 18788981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.