These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 29030548)
1. Evidence of indirect gap in monolayer WSe Hsu WT; Lu LS; Wang D; Huang JK; Li MY; Chang TR; Chou YC; Juang ZY; Jeng HT; Li LJ; Chang WH Nat Commun; 2017 Oct; 8(1):929. PubMed ID: 29030548 [TBL] [Abstract][Full Text] [Related]
2. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Desai SB; Seol G; Kang JS; Fang H; Battaglia C; Kapadia R; Ager JW; Guo J; Javey A Nano Lett; 2014 Aug; 14(8):4592-7. PubMed ID: 24988370 [TBL] [Abstract][Full Text] [Related]
3. Experimental and Theoretical Investigations of Direct and Indirect Band Gaps of WSe Wang Y; Zhang X Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930731 [TBL] [Abstract][Full Text] [Related]
4. Exciton Dynamics in MoS Markeev PA; Najafidehaghani E; Samu GF; Sarosi K; Kalkan SB; Gan Z; George A; Reisner V; Mogyorosi K; Chikan V; Nickel B; Turchanin A; de Jong MP ACS Nano; 2022 Oct; 16(10):16668-16676. PubMed ID: 36178781 [TBL] [Abstract][Full Text] [Related]
5. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures. Hu X; Kou L; Sun L Sci Rep; 2016 Aug; 6():31122. PubMed ID: 27528196 [TBL] [Abstract][Full Text] [Related]
6. Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films. Zhang Y; Ugeda MM; Jin C; Shi SF; Bradley AJ; Martín-Recio A; Ryu H; Kim J; Tang S; Kim Y; Zhou B; Hwang C; Chen Y; Wang F; Crommie MF; Hussain Z; Shen ZX; Mo SK Nano Lett; 2016 Apr; 16(4):2485-91. PubMed ID: 26974978 [TBL] [Abstract][Full Text] [Related]
7. Exciton g-factors in monolayer and bilayer WSe Förste J; Tepliakov NV; Kruchinin SY; Lindlau J; Funk V; Förg M; Watanabe K; Taniguchi T; Baimuratov AS; Högele A Nat Commun; 2020 Sep; 11(1):4539. PubMed ID: 32913234 [TBL] [Abstract][Full Text] [Related]
8. Engineering Exciton Recombination Pathways in Bilayer WSe Uddin SZ; Higashitarumizu N; Kim H; Rabani E; Javey A ACS Nano; 2022 Jan; 16(1):1339-1345. PubMed ID: 35014783 [TBL] [Abstract][Full Text] [Related]
9. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
10. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS₂ and Metal/WSe₂ Heterojunctions. Li Z; Ezhilarasu G; Chatzakis I; Dhall R; Chen CC; Cronin SB Nano Lett; 2015 Jun; 15(6):3977-82. PubMed ID: 25993397 [TBL] [Abstract][Full Text] [Related]
11. Analysis of localized excitons in strained monolayer WSe Jiang J; Pachter R Nanoscale; 2022 Aug; 14(31):11378-11387. PubMed ID: 35899773 [TBL] [Abstract][Full Text] [Related]
12. Directional Exciton-Energy Transport in a Lateral Heteromonolayer of WSe Shimasaki M; Nishihara T; Matsuda K; Endo T; Takaguchi Y; Liu Z; Miyata Y; Miyauchi Y ACS Nano; 2022 May; 16(5):8205-8212. PubMed ID: 35481755 [TBL] [Abstract][Full Text] [Related]
13. Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Zheng S; So JK; Liu F; Liu Z; Zheludev N; Fan HJ Nano Lett; 2017 Oct; 17(10):6475-6480. PubMed ID: 28933857 [TBL] [Abstract][Full Text] [Related]
14. Exciton-polaron Rydberg states in monolayer MoSe Liu E; van Baren J; Lu Z; Taniguchi T; Watanabe K; Smirnov D; Chang YC; Lui CH Nat Commun; 2021 Oct; 12(1):6131. PubMed ID: 34675213 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides. Jeong TY; Kim H; Choi SJ; Watanabe K; Taniguchi T; Yee KJ; Kim YS; Jung S Nat Commun; 2019 Aug; 10(1):3825. PubMed ID: 31444331 [TBL] [Abstract][Full Text] [Related]
17. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging. Son Y; Li MY; Cheng CC; Wei KH; Liu P; Wang QH; Li LJ; Strano MS Nano Lett; 2016 Jun; 16(6):3571-7. PubMed ID: 27120519 [TBL] [Abstract][Full Text] [Related]
18. Efficient Ultrathin Liquid Junction Photovoltaics Based on Transition Metal Dichalcogenides. Wang L; Sambur JB Nano Lett; 2019 May; 19(5):2960-2967. PubMed ID: 30913393 [TBL] [Abstract][Full Text] [Related]
19. Semiconducting van der Waals Interfaces as Artificial Semiconductors. Ponomarev E; Ubrig N; Gutiérrez-Lezama I; Berger H; Morpurgo AF Nano Lett; 2018 Aug; 18(8):5146-5152. PubMed ID: 30001136 [TBL] [Abstract][Full Text] [Related]
20. Optical grade transformation of monolayer transition metal dichalcogenides Ryu H; Hong SC; Kim K; Jung Y; Lee Y; Lee K; Kim Y; Kim H; Watanabe K; Taniguchi T; Kim J; Kim K; Cheong H; Lee GH Nanoscale; 2024 Mar; 16(11):5836-5844. PubMed ID: 38439548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]