BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29030877)

  • 1. Candida albicans possess a highly versatile and dynamic high-affinity iron transport system important for its commensal-pathogenic lifestyle.
    Mamouei Z; Zeng G; Wang YM; Wang Y
    Mol Microbiol; 2017 Dec; 106(6):986-998. PubMed ID: 29030877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans.
    Ramírez-Zavala B; Krüger I; Dunker C; Jacobsen ID; Morschhäuser J
    PLoS Pathog; 2022 Feb; 18(2):e1010283. PubMed ID: 35108336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PUTATIVE FERROXIDASES IN THE FLAVINOGENIC YEAST PICHIA GUILLIERMONDII ARE REGULATED BY IRON ACQUISITION.
    Fedorovych D; Boretsky Y; Bobak Y; Prokopiv T; Sybirny A
    Tsitol Genet; 2015; 49(5):13-9. PubMed ID: 26638492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-affinity iron permease essential for Candida albicans virulence.
    Ramanan N; Wang Y
    Science; 2000 May; 288(5468):1062-4. PubMed ID: 10807578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans.
    Ziegler L; Terzulli A; Gaur R; McCarthy R; Kosman DJ
    Mol Microbiol; 2011 Jul; 81(2):473-85. PubMed ID: 21645130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regulation of cell growth and filamentation in Candida albicans by high-affinity iron permeases Ftr1 and Ftr2].
    Du H; Zhu L
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):579-86. PubMed ID: 26259482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans.
    Weissman Z; Shemer R; Kornitzer D
    Mol Microbiol; 2002 Jun; 44(6):1551-60. PubMed ID: 12067343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans.
    Rai LS; Wijlick LV; Bougnoux ME; Bachellier-Bassi S; d'Enfert C
    Yeast; 2021 Apr; 38(4):243-250. PubMed ID: 33533498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron at the Centre of
    Fourie R; Kuloyo OO; Mochochoko BM; Albertyn J; Pohl CH
    Front Cell Infect Microbiol; 2018; 8():185. PubMed ID: 29922600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis.
    Chen C; Pande K; French SD; Tuch BB; Noble SM
    Cell Host Microbe; 2011 Aug; 10(2):118-35. PubMed ID: 21843869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of IgY against iron permease Ftr1 from Candida albicans and evaluation of its antifungal activity using Galleria mellonella as a model of systemic infection.
    de Souza PC; Corrêa AEDN; Gameiro JG; de Oliveira Júnior AG; Panagio LA; Venancio EJ; Almeida RS
    Microb Pathog; 2023 Aug; 181():106166. PubMed ID: 37290729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fecal microbiota transplantation prevents Candida albicans from colonizing the gastrointestinal tract.
    Matsuo K; Haku A; Bi B; Takahashi H; Kamada N; Yaguchi T; Saijo S; Yoneyama M; Goto Y
    Microbiol Immunol; 2019 May; 63(5):155-163. PubMed ID: 30919462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.
    Knight SA; Vilaire G; Lesuisse E; Dancis A
    Infect Immun; 2005 Sep; 73(9):5482-92. PubMed ID: 16113264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and functional interaction of FgFtr1-FgFet1 and FgFtr2-FgFet2 is required for iron uptake in Fusarium graminearum.
    Park YS; Kim JH; Cho JH; Chang HI; Kim SW; Paik HD; Kang CW; Kim TH; Sung HC; Yun CW
    Biochem J; 2007 Nov; 408(1):97-104. PubMed ID: 17655522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans iron acquisition within the host.
    Almeida RS; Wilson D; Hube B
    FEMS Yeast Res; 2009 Oct; 9(7):1000-12. PubMed ID: 19788558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis.
    Fang HM; Wang Y
    Biochem J; 2002 Dec; 368(Pt 2):641-7. PubMed ID: 12207560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability.
    Kaba HE; Nimtz M; Müller PP; Bilitewski U
    BMC Microbiol; 2013 Jan; 13():16. PubMed ID: 23347662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans.
    Dai B; Xu Y; Gao N; Chen J
    FEBS Open Bio; 2021 Mar; 11(3):598-621. PubMed ID: 33350590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive iron assimilation and intracellular siderophores assist extracellular siderophore-driven iron homeostasis and virulence.
    Condon BJ; Oide S; Gibson DM; Krasnoff SB; Turgeon BG
    Mol Plant Microbe Interact; 2014 Aug; 27(8):793-808. PubMed ID: 24762221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae.
    Lesuisse E; Knight SA; Camadro JM; Dancis A
    Yeast; 2002 Mar; 19(4):329-40. PubMed ID: 11870856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.