BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29030877)

  • 21. The opportunistic human fungal pathogen Candida albicans promotes the growth and proliferation of commensal Escherichia coli through an iron-responsive pathway.
    Li S; Yu X; Wu W; Chen DZ; Xiao M; Huang X
    Microbiol Res; 2018 Mar; 207():232-239. PubMed ID: 29458859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Candida albicans specializations for iron homeostasis: from commensalism to virulence.
    Noble SM
    Curr Opin Microbiol; 2013 Dec; 16(6):708-15. PubMed ID: 24121029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans.
    Huang X; Chen X; He Y; Yu X; Li S; Gao N; Niu L; Mao Y; Wang Y; Wu X; Wu W; Wu J; Zhou D; Zhan X; Chen C
    PLoS Pathog; 2017 Jun; 13(6):e1006414. PubMed ID: 28570675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host.
    Chen C; Noble SM
    PLoS Pathog; 2012; 8(11):e1002956. PubMed ID: 23133381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans.
    Hu CJ; Bai C; Zheng XD; Wang YM; Wang Y
    J Biol Chem; 2002 Aug; 277(34):30598-605. PubMed ID: 12060662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Candida albicans cell-type switching and functional plasticity in the mammalian host.
    Noble SM; Gianetti BA; Witchley JN
    Nat Rev Microbiol; 2017 Feb; 15(2):96-108. PubMed ID: 27867199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of different peptide transporters in nutrient acquisition in Candida albicans.
    Dunkel N; Hertlein T; Franz R; Reuß O; Sasse C; Schäfer T; Ohlsen K; Morschhäuser J
    Eukaryot Cell; 2013 Apr; 12(4):520-8. PubMed ID: 23376942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Candida albicans lipase gene expression during alimentary tract colonization and infection.
    Schofield DA; Westwater C; Warner T; Balish E
    FEMS Microbiol Lett; 2005 Mar; 244(2):359-65. PubMed ID: 15766791
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Garbe E; Miramón P; Gerwien F; Ueberschaar N; Hansske-Braun L; Brandt P; Böttcher B; Lorenz M; Vylkova S
    mBio; 2022 Feb; 13(1):e0314221. PubMed ID: 35073760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence.
    Xu N; Qian K; Dong Y; Chen Y; Yu Q; Zhang B; Xing L; Li M
    Res Microbiol; 2014 Apr; 165(3):252-61. PubMed ID: 24631590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific aspartate residues in FET3 control high-affinity iron transport in Saccharomyces cerevisiae.
    Bonaccorsi di Patti MC; Felice MR; De Domenico I; Lania A; Alaleona F; Musci G
    Yeast; 2005 Jul; 22(9):677-87. PubMed ID: 16032772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Csa2, a member of the Rbt5 protein family, is involved in the utilization of iron from human hemoglobin during Candida albicans hyphal growth.
    Okamoto-Shibayama K; Kikuchi Y; Kokubu E; Sato Y; Ishihara K
    FEMS Yeast Res; 2014 Jun; 14(4):674-7. PubMed ID: 24796871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A family of oligopeptide transporters is required for growth of Candida albicans on proteins.
    Reuss O; Morschhäuser J
    Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulatory networks affected by iron availability in Candida albicans.
    Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N
    Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and functional characterization of mitochondrial carrier Mrs4 in Candida albicans.
    Xu N; Cheng X; Yu Q; Zhang B; Ding X; Xing L; Li M
    FEMS Yeast Res; 2012 Nov; 12(7):844-58. PubMed ID: 22846114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of the genes encoding the high-affinity iron-uptake protein complex Fet3/Ftr1 in the basidiomycete Phanerochaete chrysosporium.
    Larrondo LF; Canessa P; Melo F; Polanco R; Vicuña R
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1772-1780. PubMed ID: 17526834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional response of Candida albicans upon internalization by macrophages.
    Lorenz MC; Bender JA; Fink GR
    Eukaryot Cell; 2004 Oct; 3(5):1076-87. PubMed ID: 15470236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.
    Kuznets G; Vigonsky E; Weissman Z; Lalli D; Gildor T; Kauffman SJ; Turano P; Becker J; Lewinson O; Kornitzer D
    PLoS Pathog; 2014 Oct; 10(10):e1004407. PubMed ID: 25275454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization.
    Weissman Z; Kornitzer D
    Mol Microbiol; 2004 Aug; 53(4):1209-20. PubMed ID: 15306022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.