These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29030941)

  • 1. Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos.
    Ceffa NG; Cesana I; Collini M; D'Alfonso L; Carra S; Cotelli F; Sironi L; Chirico G
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29030941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo flow mapping in complex vessel networks by single image correlation.
    Sironi L; Bouzin M; Inverso D; D'Alfonso L; Pozzi P; Cotelli F; Guidotti LG; Iannacone M; Collini M; Chirico G
    Sci Rep; 2014 Dec; 4():7341. PubMed ID: 25475129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos.
    Chen Y; Trinh LA; Fingler J; Fraser SE
    J Biomed Opt; 2016 Dec; 21(12):126022. PubMed ID: 28036094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.
    Sassaroli A; Kainerstorfer JM; Fantini S
    J Theor Biol; 2016 Jan; 389():132-45. PubMed ID: 26555847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using correlative light and electron microscopy to study zebrafish vascular morphogenesis.
    Goetz JG; Monduc F; Schwab Y; Vermot J
    Methods Mol Biol; 2015; 1189():31-46. PubMed ID: 25245685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image Cross-Correlation Analysis of Time Varying Flows.
    Marquezin CA; Ceffa NG; Cotelli F; Collini M; Sironi L; Chirico G
    Anal Chem; 2016 Jul; 88(14):7115-22. PubMed ID: 27348197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation.
    Chan G; Balaratnasingam C; Xu J; Mammo Z; Han S; Mackenzie P; Merkur A; Kirker A; Albiani D; Sarunic MV; Yu DY
    Microvasc Res; 2015 Jul; 100():32-9. PubMed ID: 25917012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Visualization of Vasculature in Adult Zebrafish by Using High-Frequency Ultrafast Ultrasound Imaging.
    Chang CC; Chen PY; Huang H; Huang CC
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1742-1751. PubMed ID: 30387718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of the branching pattern of blood vessels in the wall of the avian yolk sac studied by a computer simulation.
    Honda H; Yoshizato K
    Dev Growth Differ; 1997 Oct; 39(5):581-9. PubMed ID: 9338593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos.
    Pozzi P; Sironi L; D'Alfonso L; Bouzin M; Collini M; Chirico G; Pallavicini P; Cotelli F; Foglia EA
    J Biomed Opt; 2014 Jun; 19(6):067007. PubMed ID: 24946713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo correlation mapping microscopy.
    McGrath J; Alexandrov S; Owens P; Subhash H; Leahy M
    J Biomed Opt; 2016 Apr; 21(4):46004. PubMed ID: 27071415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying function in the early embryonic heart.
    Johnson BM; Garrity DM; Dasi LP
    J Biomech Eng; 2013 Apr; 135(4):041006. PubMed ID: 24231901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data.
    Deneux T; Takerkart S; Grinvald A; Masson GS; Vanzetta I
    Neuroimage; 2012 Feb; 59(3):2569-88. PubMed ID: 21925275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells.
    Hebert B; Costantino S; Wiseman PW
    Biophys J; 2005 May; 88(5):3601-14. PubMed ID: 15722439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis.
    Park OK; Kwak J; Jung YJ; Kim YH; Hong HS; Hwang BJ; Kwon SH; Kee Y
    Mol Cells; 2015 Nov; 38(11):975-81. PubMed ID: 26429501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring blood flow velocities based on three image processing techniques.
    Zeng YJ; Zhang JH; Shen B; Diao Y; Xu H
    Med Phys; 2005 Apr; 32(4):1187-92. PubMed ID: 15895602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic flow visualization of early embryonic great vessels using μPIV.
    Goktas S; Chen CY; Kowalski WJ; Pekkan K
    Methods Mol Biol; 2015; 1189():17-30. PubMed ID: 25245684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High dynamic range optical projection tomography (HDR-OPT).
    Fei P; Yu Z; Wang X; Lu PJ; Fu Y; He Z; Xiong J; Huang Y
    Opt Express; 2012 Apr; 20(8):8824-36. PubMed ID: 22513593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2-D/3-D model-based method to quantify the complexity of microvasculature imaged by in vivo multiphoton microscopy.
    Tyrrell JA; Mahadevan V; Tong RT; Brown EB; Jain RK; Roysam B
    Microvasc Res; 2005 Nov; 70(3):165-78. PubMed ID: 16239015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction and representation of caudal vasculature of zebrafish embryo from confocal scanning laser fluorescence microscopic images.
    Feng J; Cheng SH; Chan PK; Ip HH
    Comput Biol Med; 2005 Dec; 35(10):915-31. PubMed ID: 16263106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.