These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29030942)

  • 1. Toward jet injection by continuous-wave laser cavitation.
    Berrospe-Rodriguez C; Visser CW; Schlautmann S; Rivas DF; Ramos-Garcia R
    J Biomed Opt; 2017 Oct; 22(10):1-9. PubMed ID: 29030942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jet injectors: Perspectives for small volume delivery with lasers.
    Schoppink J; Fernandez Rivas D
    Adv Drug Deliv Rev; 2022 Mar; 182():114109. PubMed ID: 34998902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation.
    González-Sierra NE; Perez-Corte JM; Padilla-Martinez JP; Cruz-Vanegas S; Bonfadini S; Storti F; Criante L; Ramos-García R
    J Biomed Opt; 2023 Jul; 28(7):075004. PubMed ID: 37484974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Needle-free delivery of fluids from compact laser-based jet injector.
    Krizek J; De Goumoëns F; Delrot P; Moser C
    Lab Chip; 2020 Oct; 20(20):3784-3791. PubMed ID: 32902554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of laser induced jets in needle free jet injections.
    Rohilla P; Marston J
    Int J Pharm; 2020 Nov; 589():119714. PubMed ID: 32822782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave laser generated jets for needle free applications.
    Berrospe-Rodriguez C; Visser CW; Schlautmann S; Ramos-Garcia R; Fernandez Rivas D
    Biomicrofluidics; 2016 Jan; 10(1):014104. PubMed ID: 26858816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of needle-assisted jet injections.
    Li X; Ruddy B; Taberner A
    J Control Release; 2016 Dec; 243():195-203. PubMed ID: 27746273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery Strategies for Skin: Comparison of Nanoliter Jets, Needles and Topical Solutions.
    Cu K; Bansal R; Mitragotri S; Fernandez Rivas D
    Ann Biomed Eng; 2020 Jul; 48(7):2028-2039. PubMed ID: 31617044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jet injection into polyacrylamide gels: investigation of jet injection mechanics.
    Schramm-Baxter J; Katrencik J; Mitragotri S
    J Biomech; 2004 Aug; 37(8):1181-8. PubMed ID: 15212923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic control of needle-free jet injection.
    Stachowiak JC; Li TH; Arora A; Mitragotri S; Fletcher DA
    J Control Release; 2009 Apr; 135(2):104-12. PubMed ID: 19284969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation study on molecules released from laser-based jet injector.
    Krizek J; Lavickova B; Moser C
    Int J Pharm; 2021 Jun; 602():120664. PubMed ID: 33933639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of geometrical parameters on the fluid dynamics of air-powered needle-free jet injectors.
    Mohizin A; Kim JK
    Comput Biol Med; 2020 Mar; 118():103642. PubMed ID: 32174321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of jet speed on large volume jet injection.
    McKeage JW; Ruddy BP; Nielsen PMF; Taberner AJ
    J Control Release; 2018 Jun; 280():51-57. PubMed ID: 29723614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets.
    Arora A; Hakim I; Baxter J; Rathnasingham R; Srinivasan R; Fletcher DA; Mitragotri S
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4255-60. PubMed ID: 17360511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezoelectric control of needle-free transdermal drug delivery.
    Stachowiak JC; von Muhlen MG; Li TH; Jalilian L; Parekh SH; Fletcher DA
    J Control Release; 2007 Dec; 124(1-2):88-97. PubMed ID: 17884231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed needleless injector based on thermocavitation: analysis of impact and penetration depth in skin phantoms in a repetitive regime.
    Zaca-Morán R; Mitre-Martínez DG; Castillo-Mixcóalt J; Zaca-Morán P; Ramos-García R; Ramírez-San-Juan JC; Morán-Raya C; Padilla-Martínez JP
    Drug Deliv Transl Res; 2024 Jun; ():. PubMed ID: 38831200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic behavior of a spring-powered micronozzle needle-free injector.
    Schoubben A; Cavicchi A; Barberini L; Faraon A; Berti M; Ricci M; Blasi P; Postrioti L
    Int J Pharm; 2015 Aug; 491(1-2):91-8. PubMed ID: 26027490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transdermal drug delivery by jet injectors: energetics of jet formation and penetration.
    Schramm J; Mitragotri S
    Pharm Res; 2002 Nov; 19(11):1673-9. PubMed ID: 12458673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power.
    Schramm-Baxter J; Mitragotri S
    J Control Release; 2004 Jul; 97(3):527-35. PubMed ID: 15212884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study.
    Seok J; Oh CT; Kwon HJ; Kwon TR; Choi EJ; Choi SY; Mun SK; Han SH; Kim BJ; Kim MN
    Lasers Surg Med; 2016 Aug; 48(6):624-8. PubMed ID: 27075398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.