These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29031091)

  • 41. Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling.
    Chen L; Chen Z; Chen D; Xiong W
    J Environ Sci (China); 2017 Feb; 52():276-283. PubMed ID: 28254048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles.
    Yuan P; Liu D; Fan M; Yang D; Zhu R; Ge F; Zhu J; He H
    J Hazard Mater; 2010 Jan; 173(1-3):614-21. PubMed ID: 19748178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.
    Suksabye P; Thiravetyan P
    J Environ Manage; 2012 Jul; 102():1-8. PubMed ID: 22421026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of hexavalent chromium from aqueous solution by iron nanoparticles.
    Niu SF; Liu Y; Xu XH; Lou ZH
    J Zhejiang Univ Sci B; 2005 Oct; 6(10):1022-7. PubMed ID: 16187417
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves.
    Nakkeeran E; Saranya N; Giri Nandagopal MS; Santhiagu A; Selvaraju N
    Int J Phytoremediation; 2016 Aug; 18(8):812-21. PubMed ID: 26853060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of immobilized nanotubular TiO(2) electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr(VI)) in water.
    Yoon J; Shim E; Bae S; Joo H
    J Hazard Mater; 2009 Jan; 161(2-3):1069-74. PubMed ID: 18502574
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel antifouling nano-enhanced thin-film composite membrane containing cross-linkable acrylate-alumoxane nanoparticles for water softening.
    Ghaemi N
    J Colloid Interface Sci; 2017 Jan; 485():81-90. PubMed ID: 27657836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SnS
    Zhang G; Chen D; Li N; Xu Q; Li H; He J; Lu J
    J Colloid Interface Sci; 2018 Mar; 514():306-315. PubMed ID: 29275249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems.
    Yoon IH; Bang S; Chang JS; Gyu Kim M; Kim KW
    J Hazard Mater; 2011 Feb; 186(1):855-62. PubMed ID: 21163574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasound-assisted synthesis of nanocomposites based on aromatic polyamide and modified ZnO nanoparticle for removal of toxic Cr(VI) from water.
    Dinari M; Haghighi A
    Ultrason Sonochem; 2018 Mar; 41():75-84. PubMed ID: 29137801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.
    Wu P; Li S; Ju L; Zhu N; Wu J; Li P; Dang Z
    J Hazard Mater; 2012 Jun; 219-220():283-8. PubMed ID: 22521796
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of hexavalent chromium from aqueous solution by calcined Zn/Al-LDHs.
    Yang HD; Zhao YP; Li SF; Fan X; Wei XY; Zong ZM
    Water Sci Technol; 2016; 74(1):229-35. PubMed ID: 27387001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic and isotherm of hexavalent chromium adsorption onto nano hydroxyapatite.
    Asgari G; Rahmani AR; Faradmal J; Seid Mohammadi AM
    J Res Health Sci; 2012; 12(1):45-53. PubMed ID: 22888714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5.
    Mohtor NH; Othman MHD; Bakar SA; Kurniawan TA; Dzinun H; Norddin MNAM; Rajis Z
    Chemosphere; 2018 Oct; 208():595-605. PubMed ID: 29890498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anti-Biofouling and Desalination Properties of Thin Film Composite Reverse Osmosis Membranes Modified with Copper and Iron Nanoparticles.
    Armendariz Ontiveros M; Quintero Y; Llanquilef A; Morel M; Argentel Martínez L; García García A; Garcia A
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31261628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel method of square wave voltammetry for deposition of Bi
    Chahkandi M; Zargazi M
    J Hazard Mater; 2019 Dec; 380():120879. PubMed ID: 31325700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the adsorption of chromium(VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles.
    Burks T; Avila M; Akhtar F; Göthelid M; Lansåker PC; Toprak MS; Muhammed M; Uheida A
    J Colloid Interface Sci; 2014 Jul; 425():36-43. PubMed ID: 24776661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic behaviour of ionic liquid impregnated sulphate-crosslinked chitosan towards adsorption of Cr(VI).
    Shekhawat A; Kahu S; Saravanan D; Jugade R
    Int J Biol Macromol; 2015 Sep; 80():615-26. PubMed ID: 26206740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.