BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29031104)

  • 1. Evaluation of the Gauss-Eyring model to predict thermal inactivation of micro-organisms at short holding times.
    Timmermans RAH; Mastwijk HC; Nierop Groot MN; Van Boekel MAJS
    Int J Food Microbiol; 2017 Dec; 263():47-60. PubMed ID: 29031104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice.
    Timmermans RAH; Mastwijk HC; Berendsen LBJM; Nederhoff AL; Matser AM; Van Boekel MAJS; Nierop Groot MN
    Int J Food Microbiol; 2019 Jun; 298():63-73. PubMed ID: 30925357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations.
    Fenoglio D; Ferrario M; Schenk M; Guerrero S
    Int J Food Microbiol; 2020 Nov; 332():108767. PubMed ID: 32593099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms.
    Timmermans RA; Nierop Groot MN; Nederhoff AL; van Boekel MA; Matser AM; Mastwijk HC
    Int J Food Microbiol; 2014 Mar; 173():105-11. PubMed ID: 24418831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor.
    Bhullar MS; Patras A; Kilanzo-Nthenge A; Pokharel B; Yannam SK; Rakariyatham K; Pan C; Xiao H; Sasges M
    Food Res Int; 2018 Jan; 103():59-67. PubMed ID: 29389643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal inactivation of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in breaded pork patties.
    Osaili TM; Griffis CL; Martin EM; Beard BL; Keener AE; Marcy JA
    J Food Sci; 2007 Mar; 72(2):M56-61. PubMed ID: 17995843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting microbial heat inactivation under nonisothermal treatments.
    Hassani M; Condón S; Pagán R
    J Food Prot; 2007 Jun; 70(6):1457-67. PubMed ID: 17612077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic modeling of high-pressure induced inactivation of polyphenol oxidase in sugarcane juice (Saccharum officinarum).
    Sreedevi P; Jayachandran LE; Rao PS
    J Sci Food Agric; 2019 Mar; 99(5):2365-2374. PubMed ID: 30353562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation kinetics of Escherichia coli in cranberry juice during multistage treatment by electric fields.
    Rezaeimotlagh A; Tang KSC; Resch M; Cullen PJ; Trujillo FJ
    Food Res Int; 2018 Apr; 106():780-790. PubMed ID: 29579987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Gauss-Eyring model: A new thermodynamic model for biochemical and microbial inactivation kinetics.
    Mastwijk HC; Timmermans RAH; Van Boekel MAJS
    Food Chem; 2017 Dec; 237():331-341. PubMed ID: 28764004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation kinetics of Listeria monocytogenes by high-pressure processing: pressure and temperature variation.
    Doona CJ; Feeherry FE; Ross EW; Kustin K
    J Food Sci; 2012 Aug; 77(8):M458-65. PubMed ID: 22748039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections.
    Huang L; Hwang A; Phillips J
    J Food Sci; 2011 Oct; 76(8):E553-60. PubMed ID: 22417589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to predicting microbial inactivation kinetics during high pressure processing.
    Koseki S; Yamamoto K
    Int J Food Microbiol; 2007 May; 116(2):275-82. PubMed ID: 17363099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice.
    Park IK; Ha JW; Kang DH
    BMC Microbiol; 2017 May; 17(1):117. PubMed ID: 28525985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Thermal inactivation model of Listeria monocytogenes in ground beef].
    Feng X; Wang Q; Wang R; Chen Q; Su Y; Zhu R; Zhu L; Luo X
    Wei Sheng Wu Xue Bao; 2011 May; 51(5):684-91. PubMed ID: 21800632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical quantification of the induced stress resistance of microbial populations during non-isothermal stresses.
    Garre A; Huertas JP; González-Tejedor GA; Fernández PS; Egea JA; Palop A; Esnoz A
    Int J Food Microbiol; 2018 Feb; 266():133-141. PubMed ID: 29216553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling thermal inactivation of Listeria monocytogenes in sucrose solutions of various water activities.
    Fernández A; López M; Bernardo A; Condón S; Raso J
    Food Microbiol; 2007 Jun; 24(4):372-9. PubMed ID: 17189763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microstructure and initial cell conditions on thermal inactivation kinetics and sublethal injury of Listeria monocytogenes in fish-based food model systems.
    Verheyen D; Baka M; Akkermans S; Skåra T; Van Impe JF
    Food Microbiol; 2019 Dec; 84():103267. PubMed ID: 31421789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.