These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29031302)
1. Fast quantitation of opioid isomers in human plasma by differential mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface. Liu C; Gómez-Ríos GA; Schneider BB; Le Blanc JCY; Reyes-Garcés N; Arnold DW; Covey TR; Pawliszyn J Anal Chim Acta; 2017 Oct; 991():89-94. PubMed ID: 29031302 [TBL] [Abstract][Full Text] [Related]
2. Open Port Probe Sampling Interface for the Direct Coupling of Biocompatible Solid-Phase Microextraction to Atmospheric Pressure Ionization Mass Spectrometry. Gómez-Ríos GA; Liu C; Tascon M; Reyes-Garcés N; Arnold DW; Covey TR; Pawliszyn J Anal Chem; 2017 Apr; 89(7):3805-3809. PubMed ID: 28192911 [TBL] [Abstract][Full Text] [Related]
3. High-throughput quantification of drugs of abuse in biofluids via 96-solid-phase microextraction-transmission mode and direct analysis in real time mass spectrometry. Vasiljevic T; Gómez-Ríos GA; Li F; Liang P; Pawliszyn J Rapid Commun Mass Spectrom; 2019 Sep; 33(18):1423-1433. PubMed ID: 31063263 [TBL] [Abstract][Full Text] [Related]
4. Quantitation of opioids in blood and urine using gas chromatography-mass spectrometry (GC-MS). Goldberger BA; Chronister CW; Merves ML Methods Mol Biol; 2010; 603():399-410. PubMed ID: 20077092 [TBL] [Abstract][Full Text] [Related]
5. A study of thin film solid phase microextraction methods for analysis of fluorinated benzoic acids in seawater. Boyacı E; Goryński K; Viteri CR; Pawliszyn J J Chromatogr A; 2016 Mar; 1436():51-8. PubMed ID: 26860049 [TBL] [Abstract][Full Text] [Related]
6. High-Throughput Extraction and Detection of Drugs in Urine: Parallel Sampling with Solid-Phase Microextraction (SPME) Fibers Coupled with Direct Analysis in Real Time-Mass Spectrometry (DART-MS) Detection. Li F; Musselman B Methods Mol Biol; 2018; 1810():97-106. PubMed ID: 29974421 [TBL] [Abstract][Full Text] [Related]
7. Semi-automated in vivo solid-phase microextraction sampling and the diffusion-based interface calibration model to determine the pharmacokinetics of methoxyfenoterol and fenoterol in rats. Yeung JC; de Lannoy I; Gien B; Vuckovic D; Yang Y; Bojko B; Pawliszyn J Anal Chim Acta; 2012 Sep; 742():37-44. PubMed ID: 22884205 [TBL] [Abstract][Full Text] [Related]
9. In vivo solid-phase microextraction swab-mass spectrometry for multidimensional analysis of human saliva. Wu L; Yuan ZC; Yang BC; Huang Z; Hu B Anal Chim Acta; 2021 Jun; 1164():338510. PubMed ID: 33992222 [TBL] [Abstract][Full Text] [Related]
10. Development of a Biocompatible In-Tube Solid-Phase Microextraction Device: A Sensitive Approach for Direct Analysis of Single Drops of Complex Matrixes. Piri-Moghadam H; Lendor S; Pawliszyn J Anal Chem; 2016 Dec; 88(24):12188-12195. PubMed ID: 28193058 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast Screening and Quantitation of Pesticides in Food and Environmental Matrices by Solid-Phase Microextraction-Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART). Gómez-Ríos GA; Gionfriddo E; Poole J; Pawliszyn J Anal Chem; 2017 Jul; 89(13):7240-7248. PubMed ID: 28540722 [TBL] [Abstract][Full Text] [Related]
12. Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays. Wang CH; Su H; Chou JH; Huang MZ; Lin HJ; Shiea J Anal Chim Acta; 2018 Aug; 1021():60-68. PubMed ID: 29681285 [TBL] [Abstract][Full Text] [Related]
13. Comparison of different approaches for direct coupling of solid-phase microextraction to mass spectrometry for drugs of abuse analysis in plasma. Zhou W; Wieczorek MN; Jiang RW; Pawliszyn J J Pharm Anal; 2023 Feb; 13(2):216-222. PubMed ID: 36908852 [TBL] [Abstract][Full Text] [Related]
14. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS). Beach DG; Kerrin ES; Quilliam MA Anal Bioanal Chem; 2015 Nov; 407(28):8397-409. PubMed ID: 26396078 [TBL] [Abstract][Full Text] [Related]
15. Analysis of illicit pills and drugs of abuse in urine samples using a 3D-printed open port probe hyphenated with differential mobility spectrometry-mass spectrometry. Sosnowski P; Marin V; Tian X; Hopfgartner G Analyst; 2022 Sep; 147(19):4318-4325. PubMed ID: 36040388 [TBL] [Abstract][Full Text] [Related]
16. Fast and robust direct immersion solid phase microextraction coupled with gas chromatography-time-of-flight mass spectrometry method employing a matrix compatible fiber for determination of triazole fungicides in fruits. Silva ÉA; Lopez-Avila V; Pawliszyn J J Chromatogr A; 2013 Oct; 1313():139-46. PubMed ID: 23910603 [TBL] [Abstract][Full Text] [Related]
17. High throughput quantification of prohibited substances in plasma using thin film solid phase microextraction. Reyes-Garcés N; Bojko B; Pawliszyn J J Chromatogr A; 2014 Dec; 1374():40-49. PubMed ID: 25444250 [TBL] [Abstract][Full Text] [Related]
18. Determination and pharmacokinetic study of hydrocodone in human plasma by liquid chromatography coupled with tandem mass spectrometry. Zhang R; Wang B; Wei C; Yuan G; Guo R Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(5):203-7. PubMed ID: 19728188 [TBL] [Abstract][Full Text] [Related]
19. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system. Levin DS; Miller RA; Nazarov EG; Vouros P Anal Chem; 2006 Aug; 78(15):5443-52. PubMed ID: 16878881 [TBL] [Abstract][Full Text] [Related]
20. Enhanced microfluidic open interface for the direct coupling of solid phase microextraction with liquid electron ionization-tandem mass spectrometry. Marittimo N; Famiglini G; Palma P; Arigò A; Cappiello A J Chromatogr A; 2022 Oct; 1681():463479. PubMed ID: 36108353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]