These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 29031457)
1. Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture. Li R; Zhang X; Lv X; Geng L; Li Y; Qin K; Deng Y Anal Biochem; 2017 Dec; 539():48-53. PubMed ID: 29031457 [TBL] [Abstract][Full Text] [Related]
2. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform. Wu J; Jie M; Dong X; Qi H; Lin JM Rapid Commun Mass Spectrom; 2016 Aug; 30 Suppl 1():80-6. PubMed ID: 27539420 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform. Liu W; Wang J Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952 [TBL] [Abstract][Full Text] [Related]
4. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
5. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics. Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003 [TBL] [Abstract][Full Text] [Related]
6. Drug Evaluation Based on a Multi-Channel Cell Chip with a Horizontal Co-Culture. Kim GJ; Lee KJ; Choi JW; An JH Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209790 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device. Zheng Y; Wu Z; Khan M; Mao S; Manibalan K; Li N; Lin JM; Lin L Anal Chem; 2019 Oct; 91(19):12283-12289. PubMed ID: 31456388 [TBL] [Abstract][Full Text] [Related]
8. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models. Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839 [TBL] [Abstract][Full Text] [Related]
9. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Esch MB; Ueno H; Applegate DR; Shuler ML Lab Chip; 2016 Jul; 16(14):2719-29. PubMed ID: 27332143 [TBL] [Abstract][Full Text] [Related]
10. Establishing Single-Cell Based Co-Cultures in a Deterministic Manner with a Microfluidic Chip. He CK; Chen YW; Wang SH; Hsu CH J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609349 [TBL] [Abstract][Full Text] [Related]
11. [Design and fabrication of a microfluidic chip for the co-culture of three cell types]. Wang S; Ge Y; Wu L; Guo H; Yang S; Jin Q Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):294-300. PubMed ID: 28956385 [TBL] [Abstract][Full Text] [Related]
12. Development of Multi-Dimensional Cell Co-Culture via a Novel Microfluidic Chip Fabricated by DMD-Based Optical Projection Lithography. Ge Z; Yu H; Yang W; Yang J; Liu B; Wang X; Liu Z; Liu L IEEE Trans Nanobioscience; 2019 Oct; 18(4):679-686. PubMed ID: 31514145 [TBL] [Abstract][Full Text] [Related]
13. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842 [TBL] [Abstract][Full Text] [Related]
14. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Choi J; Kim S; Jung J; Lim Y; Kang K; Park S; Kang S Biomaterials; 2011 Oct; 32(29):7013-22. PubMed ID: 21705075 [TBL] [Abstract][Full Text] [Related]
15. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic chip for the detection of biological toxic effects of polychlorinated biphenyls on neuronal cells. Park S; Choi JW; Kim YK J Biomed Nanotechnol; 2013 May; 9(5):880-5. PubMed ID: 23802419 [TBL] [Abstract][Full Text] [Related]
17. Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform. Aung A; Theprungsirikul J; Lim HL; Varghese S Lab Chip; 2016 May; 16(10):1886-98. PubMed ID: 27097908 [TBL] [Abstract][Full Text] [Related]
18. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Jang KJ; Suh KY Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048 [TBL] [Abstract][Full Text] [Related]
19. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. Kim JY; Fluri DA; Marchan R; Boonen K; Mohanty S; Singh P; Hammad S; Landuyt B; Hengstler JG; Kelm JM; Hierlemann A; Frey O J Biotechnol; 2015 Jul; 205():24-35. PubMed ID: 25592049 [TBL] [Abstract][Full Text] [Related]
20. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip. van de Wijdeven R; Ramstad OH; Bauer US; Halaas Ø; Sandvig A; Sandvig I Biomed Microdevices; 2018 Jan; 20(1):9. PubMed ID: 29294210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]