These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 29031457)
41. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Marturano-Kruik A; Nava MM; Yeager K; Chramiec A; Hao L; Robinson S; Guo E; Raimondi MT; Vunjak-Novakovic G Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1256-1261. PubMed ID: 29363599 [TBL] [Abstract][Full Text] [Related]
42. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro. Maschmeyer I; Hasenberg T; Jaenicke A; Lindner M; Lorenz AK; Zech J; Garbe LA; Sonntag F; Hayden P; Ayehunie S; Lauster R; Marx U; Materne EM Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):77-87. PubMed ID: 25857839 [TBL] [Abstract][Full Text] [Related]
43. Tetrahydroxystilbene glucoside inhibits α-synuclein aggregation and apoptosis in A53T α-synuclein-transfected cells exposed to MPP Zhang R; Sun F; Zhang L; Sun X; Li L Can J Physiol Pharmacol; 2017 Jun; 95(6):750-758. PubMed ID: 28187263 [TBL] [Abstract][Full Text] [Related]
44. Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury. Zhou Q; Patel D; Kwa T; Haque A; Matharu Z; Stybayeva G; Gao Y; Diehl AM; Revzin A Lab Chip; 2015 Dec; 15(23):4467-78. PubMed ID: 26480303 [TBL] [Abstract][Full Text] [Related]
45. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system. Ohtani-Kaneko R; Sato K; Tsutiya A; Nakagawa Y; Hashizume K; Tazawa H Biomed Microdevices; 2017 Oct; 19(4):91. PubMed ID: 28994005 [TBL] [Abstract][Full Text] [Related]
46. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Wagner I; Materne EM; Brincker S; Süssbier U; Frädrich C; Busek M; Sonntag F; Sakharov DA; Trushkin EV; Tonevitsky AG; Lauster R; Marx U Lab Chip; 2013 Sep; 13(18):3538-47. PubMed ID: 23648632 [TBL] [Abstract][Full Text] [Related]
47. A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Xu BY; Hu SW; Qian GS; Xu JJ; Chen HY Lab Chip; 2013 Sep; 13(18):3714-20. PubMed ID: 23884407 [TBL] [Abstract][Full Text] [Related]
48. Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia. Bruce A; Evans R; Mezan R; Shi L; Moses BS; Martin KH; Gibson LF; Yang Y PLoS One; 2015; 10(10):e0140506. PubMed ID: 26488876 [TBL] [Abstract][Full Text] [Related]
49. An electromagnetic microvalve for pneumatic control of microfluidic systems. Liu X; Li S J Lab Autom; 2014 Oct; 19(5):444-53. PubMed ID: 24742860 [TBL] [Abstract][Full Text] [Related]
51. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Lei KF; Wu MH; Hsu CW; Chen YD Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091 [TBL] [Abstract][Full Text] [Related]
52. Multiphase flow experiment and simulation for cells-on-a-chip devices. Zhang M; Zheng A; Zheng ZC; Wang MZ Proc Inst Mech Eng H; 2019 Apr; 233(4):432-443. PubMed ID: 30929613 [TBL] [Abstract][Full Text] [Related]
53. Recent advances and future applications of microfluidic live-cell microarrays. Rothbauer M; Wartmann D; Charwat V; Ertl P Biotechnol Adv; 2015 Nov; 33(6 Pt 1):948-61. PubMed ID: 26133396 [TBL] [Abstract][Full Text] [Related]
54. Assessment of hepatic metabolism-dependent nephrotoxicity on an organs-on-a-chip microdevice. Li Z; Jiang L; Zhu Y; Su W; Xu C; Tao T; Shi Y; Qin J Toxicol In Vitro; 2018 Feb; 46():1-8. PubMed ID: 28986290 [TBL] [Abstract][Full Text] [Related]
55. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Jiang H; Jiang D; Zhu P; Pi F; Ji J; Sun C; Sun J; Sun X Biosens Bioelectron; 2016 Sep; 83():126-33. PubMed ID: 27108255 [TBL] [Abstract][Full Text] [Related]
56. An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms. Wang X; Phan DTT; Zhao D; George SC; Hughes CCW; Lee AP Lab Chip; 2016 Mar; 16(5):868-876. PubMed ID: 26879519 [TBL] [Abstract][Full Text] [Related]
57. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728 [TBL] [Abstract][Full Text] [Related]
58. Using a Microfluidic Device for Culture and Drug Toxicity Testing of 3D Cells. Christoffersson J; Mandenius CF Methods Mol Biol; 2019; 1994():235-241. PubMed ID: 31124121 [TBL] [Abstract][Full Text] [Related]
59. An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detector. Zhang J; Wu J; Li H; Chen Q; Lin JM Biosens Bioelectron; 2015 Jun; 68():322-328. PubMed ID: 25599844 [TBL] [Abstract][Full Text] [Related]
60. Microfluidic cell chips for high-throughput drug screening. Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]