These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29031516)

  • 1. Growth of adult spinal cord in knifefish: Development and parametrization of a distributed model.
    Ilieş I; Sipahi R; Zupanc GKH
    J Theor Biol; 2018 Jan; 437():101-114. PubMed ID: 29031516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: A spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth.
    Sîrbulescu RF; Ilieş I; Meyer A; Zupanc GKH
    Dev Neurobiol; 2017 Nov; 77(11):1269-1307. PubMed ID: 28707354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of gliosis in a teleost model of spinal cord regeneration.
    Vitalo AG; Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):445-56. PubMed ID: 27225982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular automata modeling suggests symmetric stem-cell division, cell death, and cell drift as key mechanisms driving adult spinal cord growth in teleost fish.
    Lehotzky D; Sipahi R; Zupanc GKH
    J Theor Biol; 2021 Jan; 509():110474. PubMed ID: 32918922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem-Cell-Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish.
    Zupanc GKH
    Dev Neurobiol; 2019 May; 79(5):406-423. PubMed ID: 30829442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of caspase-3-mediated apoptosis during spinal cord regeneration in the teleost fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Zupanc GK
    Brain Res; 2009 Dec; 1304():14-25. PubMed ID: 19782669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calbindin-D
    Vitalo AG; Ilieş I; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Aug; 205(4):595-608. PubMed ID: 31165281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation.
    Salisbury JP; Sîrbulescu RF; Moran BM; Auclair JR; Zupanc GK; Agar JN
    BMC Genomics; 2015 Mar; 16(1):166. PubMed ID: 25879418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate.
    Sîrbulescu RF; Ilieş I; Amelung L; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Nov; 208(5-6):671-706. PubMed ID: 36445471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence.
    Traniello IM; Sîrbulescu RF; Ilieş I; Zupanc GK
    Dev Neurobiol; 2014 May; 74(5):514-30. PubMed ID: 24293183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis reveals dominance of gliogenesis over neurogenesis in an adult brainstem oscillator.
    Sîrbulescu RF; Ilieş I; Zupanc GK
    Dev Neurobiol; 2014 Sep; 74(9):934-52. PubMed ID: 24639054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system.
    Sîrbulescu RF; Zupanc GK
    Neuroscience; 2010 Dec; 171(2):599-612. PubMed ID: 20837106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish.
    Zupanc GK
    Brain Behav Evol; 2001; 58(5):250-75. PubMed ID: 11978945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of relative age using growth increments of scales as a minimally invasive method in the tropical freshwater Apteronotus leptorhynchus.
    Ilieş I; Traniello IM; Sîrbulescu RF; Zupanc GK
    J Fish Biol; 2014 May; 84(5):1312-25. PubMed ID: 24697593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of endogenous stem/progenitor cells following spinal cord injury.
    Horky LL; Galimi F; Gage FH; Horner PJ
    J Comp Neurol; 2006 Oct; 498(4):525-38. PubMed ID: 16874803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: a quantitative analysis.
    Zupanc GK; Clint SC; Takimoto N; Hughes AT; Wellbrock UM; Meissner D
    Brain Behav Evol; 2003; 62(1):31-42. PubMed ID: 12907858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A diffusion gradient optimization framework for spinal cord diffusion tensor imaging.
    Majumdar S; Zhu DC; Udpa SS; Raguin LG
    Magn Reson Imaging; 2011 Jul; 29(6):789-804. PubMed ID: 21550745
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Borodinsky LN
    Front Neural Circuits; 2017; 11():90. PubMed ID: 29218002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis.
    Sîrbulescu RF; Ilieş I; Zupanc GK
    Mol Cell Neurosci; 2015 Sep; 68():9-23. PubMed ID: 25827096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.