BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29031928)

  • 1. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model.
    Zhang Y; Yang Z; Gao S; Hamza T; Yfantis HG; Lipsky M; Feng H
    Anaerobe; 2017 Dec; 48():249-256. PubMed ID: 29031928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure.
    Hirota SA; Iablokov V; Tulk SE; Schenck LP; Becker H; Nguyen J; Al Bashir S; Dingle TC; Laing A; Liu J; Li Y; Bolstad J; Mulvey GL; Armstrong GD; MacNaughton WK; Muruve DA; MacDonald JA; Beck PL
    Infect Immun; 2012 Dec; 80(12):4474-84. PubMed ID: 23045481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Murine Intrarectal Instillation of Purified Recombinant
    Markham NO; Bloch SC; Shupe JA; Laubacher EN; Thomas AK; Kroh HK; Childress KO; Peritore-Galve FC; Washington MK; Coffey RJ; Lacy DB
    Infect Immun; 2021 Mar; 89(4):. PubMed ID: 33468584
    [No Abstract]   [Full Text] [Related]  

  • 4. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections.
    Carter GP; Chakravorty A; Pham Nguyen TA; Mileto S; Schreiber F; Li L; Howarth P; Clare S; Cunningham B; Sambol SP; Cheknis A; Figueroa I; Johnson S; Gerding D; Rood JI; Dougan G; Lawley TD; Lyras D
    mBio; 2015 Jun; 6(3):e00551. PubMed ID: 26037121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The xenobiotic sensing pregnane X receptor regulates tissue damage and inflammation triggered by C difficile toxins.
    Erickson SL; Alston L; Nieves K; Chang TKH; Mani S; Flannigan KL; Hirota SA
    FASEB J; 2020 Feb; 34(2):2198-2212. PubMed ID: 31907988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium difficile toxins A and B decrease intestinal SLC26A3 protein expression.
    Coffing H; Priyamvada S; Anbazhagan AN; Salibay C; Engevik M; Versalovic J; Yacyshyn MB; Yacyshyn B; Tyagi S; Saksena S; Gill RK; Alrefai WA; Dudeja PK
    Am J Physiol Gastrointest Liver Physiol; 2018 Jul; 315(1):G43-G52. PubMed ID: 29597352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.
    Wang H; Sun X; Zhang Y; Li S; Chen K; Shi L; Nie W; Kumar R; Tzipori S; Wang J; Savidge T; Feng H
    Infect Immun; 2012 Aug; 80(8):2678-88. PubMed ID: 22615245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT.
    Fischer S; Ückert AK; Landenberger M; Papatheodorou P; Hoffmann-Richter C; Mittler AK; Ziener U; Hägele M; Schwan C; Müller M; Kleger A; Benz R; Popoff MR; Aktories K; Barth H
    FASEB J; 2020 May; 34(5):6244-6261. PubMed ID: 32190927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucosyltransferase-dependent and independent effects of Clostridioides difficile toxins during infection.
    Peritore-Galve FC; Shupe JA; Cave RJ; Childress KO; Washington MK; Kuehne SA; Lacy DB
    PLoS Pathog; 2022 Feb; 18(2):e1010323. PubMed ID: 35176123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microbial metabolite urolithin A reduces
    Ghosh S; Erickson D; Chua MJ; Collins J; Jala VR
    mSystems; 2024 Feb; 9(2):e0125523. PubMed ID: 38193707
    [No Abstract]   [Full Text] [Related]  

  • 11. Contribution of adenosine A(2B) receptors in Clostridium difficile intoxication and infection.
    Warren CA; Li Y; Calabrese GM; Freire RS; Zaja-Milatovic S; van Opstal E; Figler RA; Linden J; Guerrant RL
    Infect Immun; 2012 Dec; 80(12):4463-73. PubMed ID: 23045479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine receptors differentially mediate enteric glial cell death induced by
    Costa DVS; Shin JH; Goldbeck SM; Bolick DT; Mesquita FS; Loureiro AV; Rodrigues-Jesus MJ; Brito GAC; Warren CA
    Front Immunol; 2022; 13():956326. PubMed ID: 36726986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protective effect of recombinant Lactococcus lactis oral vaccine on a Clostridium difficile-infected animal model.
    Yang XQ; Zhao YG; Chen XQ; Jiang B; Sun DY
    BMC Gastroenterol; 2013 Jul; 13():117. PubMed ID: 23865596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity.
    Romano MR; Leuzzi R; Cappelletti E; Tontini M; Nilo A; Proietti D; Berti F; Costantino P; Adamo R; Scarselli M
    Toxins (Basel); 2014 Apr; 6(4):1385-96. PubMed ID: 24759173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice.
    Yang Z; Schmidt D; Liu W; Li S; Shi L; Sheng J; Chen K; Yu H; Tremblay JM; Chen X; Piepenbrink KH; Sundberg EJ; Kelly CP; Bai G; Shoemaker CB; Feng H
    J Infect Dis; 2014 Sep; 210(6):964-72. PubMed ID: 24683195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The enterotoxicity of Clostridium difficile toxins.
    Sun X; Savidge T; Feng H
    Toxins (Basel); 2010 Jul; 2(7):1848-80. PubMed ID: 22069662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic and Phenotypic Characterization of the Nontoxigenic Clostridioides difficile Strain CCUG37785 and Demonstration of Its Therapeutic Potential for the Prevention of C. difficile Infection.
    Wang S; Heuler J; Wickramage I; Sun X
    Microbiol Spectr; 2022 Apr; 10(2):e0178821. PubMed ID: 35315695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G
    J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran.
    Doosti A; Mokhtari-Farsani A
    Ann Clin Microbiol Antimicrob; 2014 Jun; 13():21. PubMed ID: 24903619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Detection of Clostridium difficile Toxins in Stool by Raman Spectroscopy.
    Koya SK; Yurgelevic S; Brusatori M; Huang C; Diebel LN; Auner GW
    J Surg Res; 2019 Dec; 244():111-116. PubMed ID: 31279995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.