These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29032049)

  • 1. A periodic two-patch SIS model with time delay and transport-related infection.
    Liu J; Bai Z; Zhang T
    J Theor Biol; 2018 Jan; 437():36-44. PubMed ID: 29032049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonality Impact on the Transmission Dynamics of Tuberculosis.
    Yang Y; Guo C; Liu L; Zhang T; Liu W
    Comput Math Methods Med; 2016; 2016():8713924. PubMed ID: 27042199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemic models for complex networks with demographics.
    Jin Z; Sun G; Zhu H
    Math Biosci Eng; 2014 Dec; 11(6):1295-317. PubMed ID: 25365609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threshold dynamics of a time-delayed SEIRS model with pulse vaccination.
    Bai Z
    Math Biosci; 2015 Nov; 269():178-85. PubMed ID: 26408988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic dynamics on semi-directed complex networks.
    Zhang X; Sun GQ; Zhu YX; Ma J; Jin Z
    Math Biosci; 2013 Dec; 246(2):242-51. PubMed ID: 24140877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A periodic SEIRS epidemic model with a time-dependent latent period.
    Li F; Zhao XQ
    J Math Biol; 2019 Apr; 78(5):1553-1579. PubMed ID: 30607509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of stochastic perturbation on the SIS epidemic system.
    Lahrouz A; Settati A; Akharif A
    J Math Biol; 2017 Jan; 74(1-2):469-498. PubMed ID: 27289475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection.
    Cao H; Zhou Y; Ma Z
    Math Biosci Eng; 2013; 10(5-6):1399-417. PubMed ID: 24245622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment.
    Pu LQ; Lin ZG
    Math Biosci Eng; 2019 Apr; 16(4):3094-3110. PubMed ID: 31137252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threshold dynamics of a periodic SIR model with delay in an infected compartment.
    Bai Z
    Math Biosci Eng; 2015 Jun; 12(3):555-64. PubMed ID: 25811548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global stability of an age-structured epidemic model with general Lyapunov functional.
    Chekroun A; Frioui MN; Kuniya T; Touaoula TM
    Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An SIS patch model with variable transmission coefficients.
    Gao D; Ruan S
    Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An SIR epidemic model with vaccination in a patchy environment.
    Cui Q; Qiu Z; Ding L
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1141-1157. PubMed ID: 29161854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of infection age on an SIS epidemic model on complex networks.
    Yang J; Chen Y; Xu F
    J Math Biol; 2016 Nov; 73(5):1227-1249. PubMed ID: 27007281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold dynamics of a time-delayed hantavirus infection model in periodic environments.
    Liu JL
    Math Biosci Eng; 2019 May; 16(5):4758-4776. PubMed ID: 31499688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation.
    Xu J; Zhou Y
    Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disease control of delay SEIR model with nonlinear incidence rate and vertical transmission.
    Cheng Y; Pan Q; He M
    Comput Math Methods Med; 2013; 2013():830237. PubMed ID: 24416073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic analysis of the recurrent epidemic model.
    Cao H; Yan DX; Li A
    Math Biosci Eng; 2019 Jun; 16(5):5972-5990. PubMed ID: 31499748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global stability of a transport-related infection model with general incidence rate in two heterogeneous cities.
    Liu L; Liu X
    Biosystems; 2014 Dec; 126():41-51. PubMed ID: 25304154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.