BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29032199)

  • 1. Affinity and path of binding xylopyranose unto E. coli xylose permease.
    Wambo TO; Chen LY; Phelix C; Perry G
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):202-206. PubMed ID: 29032199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter.
    Jia R; Martens C; Shekhar M; Pant S; Pellowe GA; Lau AM; Findlay HE; Harris NJ; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2020 Dec; 11(1):6162. PubMed ID: 33268777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
    Sun L; Zeng X; Yan C; Sun X; Gong X; Rao Y; Yan N
    Nature; 2012 Oct; 490(7420):361-6. PubMed ID: 23075985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of sugar binding kinetics of the E. coli sugar/H
    Bazzone A; Tesmer L; Kurt D; Kaback HR; Fendler K; Madej MG
    J Biol Chem; 2022 Feb; 298(2):101505. PubMed ID: 34929170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional architecture of MFS D-glucose transporters.
    Madej MG; Sun L; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):E719-27. PubMed ID: 24550316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE.
    Ke M; Yuan Y; Jiang X; Yan N; Gong H
    PLoS Comput Biol; 2017 Jun; 13(6):e1005603. PubMed ID: 28617850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters.
    Quistgaard EM; Löw C; Moberg P; Trésaugues L; Nordlund P
    Nat Struct Mol Biol; 2013 Jun; 20(6):766-8. PubMed ID: 23624861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.
    Wisedchaisri G; Park MS; Iadanza MG; Zheng H; Gonen T
    Nat Commun; 2014 Aug; 5():4521. PubMed ID: 25088546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of xylose transporters in xylitol production from engineered Escherichia coli.
    Khankal R; Chin JW; Cirino PC
    J Biotechnol; 2008 Apr; 134(3-4):246-52. PubMed ID: 18359531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-mediated crystallization of the xylose transporter XylE from Escherichia coli in three different crystal forms.
    Quistgaard EM; Löw C; Moberg P; Nordlund P
    J Struct Biol; 2013 Nov; 184(2):375-8. PubMed ID: 24060988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gibbs Free-Energy Gradient along the Path of Glucose Transport through Human Glucose Transporter 3.
    Liang H; Bourdon AK; Chen LY; Phelix CF; Perry G
    ACS Chem Neurosci; 2018 Nov; 9(11):2815-2823. PubMed ID: 29865792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion.
    Cunningham P; Naftalin RJ
    J Membr Biol; 2014 Nov; 247(11):1161-79. PubMed ID: 25163893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis.
    Dunn KL; Rao CV
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.
    Park MS
    PLoS One; 2015; 10(4):e0125361. PubMed ID: 25919356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12.
    Davis EO; Henderson PJ
    J Biol Chem; 1987 Oct; 262(29):13928-32. PubMed ID: 2820984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed.
    Sooriyaarachchi S; Ubhayasekera W; Park C; Mowbray SL
    J Mol Biol; 2010 Oct; 402(4):657-68. PubMed ID: 20678502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases.
    Bazzone A; Madej MG; Kaback HR; Fendler K
    PLoS One; 2016; 11(5):e0156392. PubMed ID: 27227677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved movement of TMS11 between occluded conformations of LacY and XylE of the major facilitator superfamily suggests a similar hinge-like mechanism.
    Västermark Å; Driker A; Li J; Saier MH
    Proteins; 2015 Apr; 83(4):735-45. PubMed ID: 25586173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.