These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29032261)

  • 1. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.
    Im CH; Kim C; Song YE; Oh SE; Jeon BH; Kim JR
    Chemosphere; 2018 Jan; 191():166-173. PubMed ID: 29032261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supply of proton enhances CO electrosynthesis for acetate and volatile fatty acid productions.
    Song YE; Kim C; Li S; Baek J; Seol E; Park C; Na JG; Lee J; Oh YK; Kim JR
    Bioresour Technol; 2021 Jan; 320(Pt A):124245. PubMed ID: 33126131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge.
    Rao Y; Wan J; Liu Y; Angelidaki I; Zhang S; Zhang Y; Luo G
    Water Res; 2018 Aug; 139():372-380. PubMed ID: 29665509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction.
    Harrington TD; Tran VN; Mohamed A; Renslow R; Biria S; Orfe L; Call DR; Beyenal H
    Bioresour Technol; 2015 Sep; 192():689-95. PubMed ID: 26094195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.
    Rittmann SKR; Lee HS; Lim JK; Kim TW; Lee JH; Kang SG
    Biotechnol Adv; 2015; 33(1):165-177. PubMed ID: 25461503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis.
    Harrington TD; Mohamed A; Tran VN; Biria S; Gargouri M; Park JJ; Gang DR; Beyenal H
    Bioresour Technol; 2015 Nov; 195():57-65. PubMed ID: 26096579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy.
    Fukuyama Y; Inoue M; Omae K; Yoshida T; Sako Y
    Adv Appl Microbiol; 2020; 110():99-148. PubMed ID: 32386607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.
    Sipma J; Meulepas RJ; Parshina SN; Stams AJ; Lettinga G; Lens PN
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):421-8. PubMed ID: 14556037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.
    Sharma M; Jain P; Varanasi JL; Lal B; Rodríguez J; Lema JM; Sarma PM
    Bioresour Technol; 2013 Dec; 150():172-80. PubMed ID: 24161648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol.
    Zhou M; Chen J; Freguia S; Rabaey K; Keller J
    Environ Sci Technol; 2013 Oct; 47(19):11199-205. PubMed ID: 23947779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion.
    Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A
    J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.
    Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S
    Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.
    Liu Y; Wan J; Han S; Zhang S; Luo G
    Bioresour Technol; 2016 Feb; 202():1-7. PubMed ID: 26692523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation from mixed volatile fatty acids using microbial fuel cells.
    Teng SX; Tong ZH; Li WW; Wang SG; Sheng GP; Shi XY; Liu XW; Yu HQ
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2365-72. PubMed ID: 20607228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.
    Kondaveeti S; Min B
    Water Res; 2015 Dec; 87():137-44. PubMed ID: 26402877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid neutral red/Nafion conductive layer on carbon felt electrode enhances acetate production from CO
    Li S; Kim M; Jae J; Jang M; Jeon BH; Kim JR
    Bioresour Technol; 2022 Nov; 363():127983. PubMed ID: 36126849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems.
    Guo K; Chen X; Freguia S; Donose BC
    Biosens Bioelectron; 2013 Sep; 47():184-9. PubMed ID: 23578972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.
    Huang J; Zhou R; Chen J; Han W; Chen Y; Wen Y; Tang J
    Bioresour Technol; 2016 Jul; 211():80-6. PubMed ID: 27003793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system.
    Liu D; Lei L; Yang B; Yu Q; Li Z
    Bioresour Technol; 2013 Nov; 148():9-14. PubMed ID: 24035815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.