These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 29032262)
1. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121. Samadani M; Perreault F; Oukarroum A; Dewez D Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis. Yu Z; Zhang T; Hao R; Zhu Y Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077 [TBL] [Abstract][Full Text] [Related]
3. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii. Yu Z; Zhang T; Zhu Y Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954 [TBL] [Abstract][Full Text] [Related]
4. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Lavoie M; Le Faucheur S; Fortin C; Campbell PG Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040 [TBL] [Abstract][Full Text] [Related]
5. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations. Yu Z; Wei H; Hao R; Chu H; Zhu Y Environ Sci Process Impacts; 2018 Jun; 20(6):923-933. PubMed ID: 29725674 [TBL] [Abstract][Full Text] [Related]
6. Effects of TiO Yu Z; Hao R; Zhang L; Zhu Y Ecotoxicol Environ Saf; 2018 Jul; 156():75-86. PubMed ID: 29533210 [TBL] [Abstract][Full Text] [Related]
7. Cadmium accumulation and toxicity affect the extracytoplasmic polyphosphate level in Chlamydomonas reinhardtii. Samadani M; Dewez D Ecotoxicol Environ Saf; 2018 Dec; 166():200-206. PubMed ID: 30269015 [TBL] [Abstract][Full Text] [Related]
8. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress. Li C; Zheng C; Fu H; Zhai S; Hu F; Naveed S; Zhang C; Ge Y Chemosphere; 2021 Jul; 274():129771. PubMed ID: 33549886 [TBL] [Abstract][Full Text] [Related]
9. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii. Wang WX; Dei RC Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914 [TBL] [Abstract][Full Text] [Related]
10. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM. François L; Fortin C; Campbell PG Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821 [TBL] [Abstract][Full Text] [Related]
11. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Jamers A; Blust R; De Coen W; Griffin JL; Jones OA Aquat Toxicol; 2013 Jan; 126():355-64. PubMed ID: 23063003 [TBL] [Abstract][Full Text] [Related]
12. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Tahirbegi IB; Ehgartner J; Sulzer P; Zieger S; Kasjanow A; Paradiso M; Strobl M; Bouwes D; Mayr T Biosens Bioelectron; 2017 Feb; 88():188-195. PubMed ID: 27523821 [TBL] [Abstract][Full Text] [Related]
13. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii. Kobayashi I; Fujiwara S; Saegusa H; Inouhe M; Matsumoto H; Tsuzuki M Mar Biotechnol (NY); 2006; 8(1):94-101. PubMed ID: 16249965 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii. Stoiber TL; Shafer MM; Armstrong DE Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435 [TBL] [Abstract][Full Text] [Related]
15. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Röhder LA; Brandt T; Sigg L; Behra R Aquat Toxicol; 2014 Jul; 152():121-30. PubMed ID: 24747084 [TBL] [Abstract][Full Text] [Related]
16. Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aguilera A; Amils R Aquat Toxicol; 2005 Nov; 75(4):316-29. PubMed ID: 16225936 [TBL] [Abstract][Full Text] [Related]
17. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Macfie SM; Welbourn PM Arch Environ Contam Toxicol; 2000 Nov; 39(4):413-9. PubMed ID: 11031300 [TBL] [Abstract][Full Text] [Related]
18. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Aksmann A; Pokora W; Baścik-Remisiewicz A; Dettlaff-Pokora A; Wielgomas B; Dziadziuszko M; Tukaj Z Ecotoxicol Environ Saf; 2014 Dec; 110():31-40. PubMed ID: 25193882 [TBL] [Abstract][Full Text] [Related]
19. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model. Xie M; Sun Y; Feng J; Gao Y; Zhu L Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631 [TBL] [Abstract][Full Text] [Related]
20. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Abboud P; Wilkinson KJ Environ Pollut; 2013 Aug; 179():33-8. PubMed ID: 23644273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]