These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Strawberry Jia S; Wang Y; Zhang G; Yan Z; Cai Q Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396436 [TBL] [Abstract][Full Text] [Related]
3. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa. Hael-Conrad V; Perato SM; Arias ME; Martínez-Zamora MG; Di Peto PLÁ; Martos GG; Castagnaro AP; Díaz-Ricci JC; Chalfoun NR Mol Plant Microbe Interact; 2018 Jan; 31(1):46-60. PubMed ID: 28635519 [TBL] [Abstract][Full Text] [Related]
4. FaERF2 activates two β-1,3-glucanase genes to enhance strawberry resistance to Botrytis cinerea. Peng Y; Liang M; Zhang X; Yu M; Liu H; Cheng Z; Xiong J Plant Sci; 2024 Oct; 347():112179. PubMed ID: 39004407 [TBL] [Abstract][Full Text] [Related]
5. Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. Negrini F; O'Grady K; Hyvönen M; Folta KM; Baraldi E PLoS One; 2020; 15(3):e0226448. PubMed ID: 32214345 [TBL] [Abstract][Full Text] [Related]
6. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3. Guerrero-Molina MF; Lovaisa NC; Salazar SM; Martínez-Zamora MG; Díaz-Ricci JC; Pedraza RO Plant Biol (Stuttg); 2015 May; 17(3):766-73. PubMed ID: 25280241 [TBL] [Abstract][Full Text] [Related]
7. RNA interference-based strategies to control Botrytis cinerea infection in cultivated strawberry. Capriotti L; Molesini B; Pandolfini T; Jin H; Baraldi E; Cecchin M; Mezzetti B; Sabbadini S Plant Cell Rep; 2024 Jul; 43(8):201. PubMed ID: 39048858 [TBL] [Abstract][Full Text] [Related]
8. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry. Silva KJ; Brunings A; Peres NA; Mou Z; Folta KM Transgenic Res; 2015 Aug; 24(4):693-704. PubMed ID: 25812515 [TBL] [Abstract][Full Text] [Related]
9. Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. Benikhlef L; L'Haridon F; Abou-Mansour E; Serrano M; Binda M; Costa A; Lehmann S; Métraux JP BMC Plant Biol; 2013 Sep; 13():133. PubMed ID: 24033927 [TBL] [Abstract][Full Text] [Related]
10. The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L. Silva KJP; Brunings AM; Pereira JA; Peres NA; Folta KM; Mou Z BMC Plant Biol; 2017 Dec; 17(1):230. PubMed ID: 29191170 [TBL] [Abstract][Full Text] [Related]
11. Induction of Direct or Priming Resistance against Botrytis cinerea in Strawberries by β-Aminobutyric Acid and Their Effects on Sucrose Metabolism. Wang K; Liao Y; Xiong Q; Kan J; Cao S; Zheng Y J Agric Food Chem; 2016 Jul; 64(29):5855-65. PubMed ID: 27368357 [TBL] [Abstract][Full Text] [Related]
12. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit. Saavedra GM; Sanfuentes E; Figueroa PM; Figueroa CR Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671619 [TBL] [Abstract][Full Text] [Related]
13. Functional characterization of MANNOSE-BINDING LECTIN 1, a G-type lectin gene family member, in response to fungal pathogens of strawberry. Ma L; Haile ZM; Sabbadini S; Mezzetti B; Negrini F; Baraldi E J Exp Bot; 2023 Jan; 74(1):149-161. PubMed ID: 36219205 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome Analysis of the Fruit of Two Strawberry Cultivars "Sunnyberry" and "Kingsberry" That Show Different Susceptibility to Lee K; Lee JG; Min K; Choi JH; Lim S; Lee EJ Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546320 [TBL] [Abstract][Full Text] [Related]
15. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses. Wei W; Hu Y; Han YT; Zhang K; Zhao FL; Feng JY Plant Physiol Biochem; 2016 Aug; 105():129-144. PubMed ID: 27105420 [TBL] [Abstract][Full Text] [Related]
16. The role of WRKY transcription factors, FaWRKY29 and FaWRKY64, for regulating Botrytis fruit rot resistance in strawberry (Fragaria × ananassa Duch.). Lee MB; Han H; Lee S BMC Plant Biol; 2023 Sep; 23(1):420. PubMed ID: 37691125 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism. Nardi CF; Villarreal NM; Rossi FR; Martínez S; Martínez GA; Civello PM Plant Mol Biol; 2015 May; 88(1-2):101-17. PubMed ID: 25837738 [TBL] [Abstract][Full Text] [Related]
18. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. Reboledo G; Agorio AD; Vignale L; Batista-García RA; Ponce De León I Plant Mol Biol; 2021 Nov; 107(4-5):365-385. PubMed ID: 33521880 [TBL] [Abstract][Full Text] [Related]
20. Analysis of Methylesterase Gene Family in Jia R; Xing K; Tian L; Dong X; Yu L; Shen X; Wang Y J Agric Food Chem; 2024 May; 72(20):11392-11404. PubMed ID: 38717972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]