BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29032592)

  • 41. HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1-ELF3-PIF4 pathway in Arabidopsis.
    Zeng Y; Wang J; Huang S; Xie Y; Zhu T; Liu L; Li L
    New Phytol; 2023 Aug; 239(4):1253-1265. PubMed ID: 36707919
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis.
    Li N; Bo C; Zhang Y; Wang L
    J Exp Bot; 2021 May; 72(12):4577-4589. PubMed ID: 33830198
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling.
    Zhou Y; Sun X; Yang Y; Li X; Cheng Y; Yang Y
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27338368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways.
    Choudhary MK; Nomura Y; Wang L; Nakagami H; Somers DE
    Mol Cell Proteomics; 2015 Aug; 14(8):2243-60. PubMed ID: 26091701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Evening Complex and the Chromatin-Remodeling Factor PICKLE Coordinately Control Seed Dormancy by Directly Repressing
    Zha P; Liu S; Li Y; Ma T; Yang L; Jing Y; Lin R
    Plant Commun; 2020 Mar; 1(2):100011. PubMed ID: 33404551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.
    Dornbusch T; Michaud O; Xenarios I; Fankhauser C
    Plant Cell; 2014 Oct; 26(10):3911-21. PubMed ID: 25281688
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.
    Wang F; Kong W; Wong G; Fu L; Peng R; Li Z; Yao Q
    Mol Genet Genomics; 2016 Aug; 291(4):1545-59. PubMed ID: 27033553
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.
    Sellaro R; Pacín M; Casal JJ
    Mol Plant; 2012 May; 5(3):619-28. PubMed ID: 22311777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence.
    Balazadeh S; Siddiqui H; Allu AD; Matallana-Ramirez LP; Caldana C; Mehrnia M; Zanor MI; Köhler B; Mueller-Roeber B
    Plant J; 2010 Apr; 62(2):250-64. PubMed ID: 20113437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis.
    Matallana-Ramirez LP; Rauf M; Farage-Barhom S; Dortay H; Xue GP; Dröge-Laser W; Lers A; Balazadeh S; Mueller-Roeber B
    Mol Plant; 2013 Sep; 6(5):1438-52. PubMed ID: 23340744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Importance of epidermal clocks for regulation of hypocotyl elongation through PIF4 and IAA29.
    Shimizu H; Torii K; Araki T; Endo M
    Plant Signal Behav; 2016; 11(2):e1143999. PubMed ID: 26829165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis.
    Hicks KA; Albertson TM; Wagner DR
    Plant Cell; 2001 Jun; 13(6):1281-92. PubMed ID: 11402160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis.
    Zhu JY; Oh E; Wang T; Wang ZY
    Nat Commun; 2016 Dec; 7():13692. PubMed ID: 27966533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis.
    Wang F; Zhu H; Kong W; Peng R; Liu Q; Yao Q
    Planta; 2016 Jul; 244(1):59-73. PubMed ID: 26945856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis.
    Jung JH; Barbosa AD; Hutin S; Kumita JR; Gao M; Derwort D; Silva CS; Lai X; Pierre E; Geng F; Kim SB; Baek S; Zubieta C; Jaeger KE; Wigge PA
    Nature; 2020 Sep; 585(7824):256-260. PubMed ID: 32848244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ELF3 modulates resetting of the circadian clock in Arabidopsis.
    Covington MF; Panda S; Liu XL; Strayer CA; Wagner DR; Kay SA
    Plant Cell; 2001 Jun; 13(6):1305-15. PubMed ID: 11402162
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex epistatic interactions between ELF3, PRR9, and PRR7 regulate the circadian clock and plant physiology.
    Yuan L; Avello P; Zhu Z; Lock SCL; McCarthy K; Redmond EJ; Davis AM; Song Y; Ezer D; Pitchford JW; Quint M; Xie Q; Xu X; Davis SJ; Ronald J
    Genetics; 2024 Mar; 226(3):. PubMed ID: 38142447
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ambient temperature signalling in plants.
    Wigge PA
    Curr Opin Plant Biol; 2013 Oct; 16(5):661-6. PubMed ID: 24021869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time.
    Kim WY; Hicks KA; Somers DE
    Plant Physiol; 2005 Nov; 139(3):1557-69. PubMed ID: 16258016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance.
    Hu Y; Chen L; Wang H; Zhang L; Wang F; Yu D
    Plant J; 2013 Jun; 74(5):730-45. PubMed ID: 23451802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.