BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29032680)

  • 1. Accelerating Gold Nanorod Synthesis with Nanomolar Concentrations of Poly(vinylpyrrolidone).
    Requejo KI; Liopo AV; Derry PJ; Zubarev ER
    Langmuir; 2017 Nov; 33(44):12681-12688. PubMed ID: 29032680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gram-Scale Synthesis of Isolated Monodisperse Gold Nanorods.
    Khanal BP; Zubarev ER
    Chemistry; 2019 Jan; 25(6):1595-1600. PubMed ID: 30471145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions.
    Zhu Q; Wu J; Zhao J; Ni W
    Langmuir; 2015 Apr; 31(14):4072-7. PubMed ID: 25785656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield synthesis of monodisperse gold nanorods with a tunable plasmon wavelength using 3-aminophenol as the reducing agent.
    Wu Z; Liang Y; Cao L; Guo Q; Jiang S; Mao F; Sheng J; Xiao Q
    Nanoscale; 2019 Dec; 11(47):22890-22898. PubMed ID: 31763638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold Nanorod Synthesis with Small Thiolated Molecules.
    Requejo KI; Liopo AV; Zubarev ER
    Langmuir; 2020 Apr; 36(14):3758-3769. PubMed ID: 32216357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation.
    Beltran O; Luna M; Gastelum M; Costa-Santos A; Cambón A; Taboada P; López-Mata MA; Topete A; Juarez J
    Pharmaceutics; 2023 Nov; 15(11):. PubMed ID: 38004550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Aspects of the Gold Nanorod Formation Mechanism via Seed-Mediated Methods Revealed by Molecular Dynamics Simulations.
    da Silva JA; Meneghetti MR
    Langmuir; 2018 Jan; 34(1):366-375. PubMed ID: 29243933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.
    Liu K; Zheng Y; Lu X; Thai T; Lee NA; Bach U; Gooding JJ
    Langmuir; 2015 May; 31(17):4973-80. PubMed ID: 25874503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intensity and energy of CW UV light on the growth of gold nanorods.
    Miranda OR; Ahmadi TS
    J Phys Chem B; 2005 Aug; 109(33):15724-34. PubMed ID: 16852995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Library approach for reliable synthesis and properties of DNA-gold nanorod conjugates.
    Joo JH; Lee JS
    Anal Chem; 2013 Jul; 85(14):6580-6. PubMed ID: 23799292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective replacement of cetyltrimethylammonium bromide (CTAB) by mercaptoalkanoic acids on gold nanorod (AuNR) surfaces in aqueous solutions.
    Del Caño R; Gisbert-González JM; González-Rodríguez J; Sánchez-Obrero G; Madueño R; Blázquez M; Pineda T
    Nanoscale; 2020 Jan; 12(2):658-668. PubMed ID: 31829396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of gold nanoworms with a tunable length and aspect ratio through oriented attachment of nanoparticles.
    Ahmed W; Glass C; van Ruitenbeek JM
    Nanoscale; 2014 Nov; 6(21):13222-7. PubMed ID: 25257513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short gold nanorod growth revisited: the critical role of the bromide counterion.
    Si S; Leduc C; Delville MH; Lounis B
    Chemphyschem; 2012 Jan; 13(1):193-202. PubMed ID: 22162413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods.
    González-Rubio G; Kumar V; Llombart P; Díaz-Núñez P; Bladt E; Altantzis T; Bals S; Peña-Rodríguez O; Noya EG; MacDowell LG; Guerrero-Martínez A; Liz-Marzán LM
    ACS Nano; 2019 Apr; 13(4):4424-4435. PubMed ID: 30939242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of envelope-type lipid nanoparticles containing gold nanorods for photothermal cancer therapy.
    Paraiso WKD; Tanaka H; Sato Y; Shirane D; Suzuki N; Ogra Y; Tange K; Nakai Y; Yoshioka H; Harashima H; Akita H
    Colloids Surf B Biointerfaces; 2017 Dec; 160():715-723. PubMed ID: 29035819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological control of seedlessly-synthesized gold nanorods using binary surfactants.
    Roach L; Ye S; Moorcroft SCT; Critchley K; Coletta PL; Evans SD
    Nanotechnology; 2018 Apr; 29(13):135601. PubMed ID: 29355832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.
    Ferhan AR; Guo L; Kim DH
    Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration of Cetyltrimethylammonium Bromide on Gold Nanorods by Human Serum Albumin Causes Its Conformation Change.
    Azman N'; Thanh NX; Yong Kah JC
    Langmuir; 2020 Jan; 36(1):388-396. PubMed ID: 31826617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Shape Yield and Long-Term Stability of Gold Nanoprisms with Poly(vinylpyrrolidone).
    Requejo KI; Liopo AV; Derry PJ; Zubarev ER
    Langmuir; 2019 Jul; 35(30):9777-9784. PubMed ID: 31290673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring optical cross sections of gold nanorods at a target plasmonic resonance wavelength using bromosalicylic acid.
    Zou W; Xie H; Ye Y; Ni W
    RSC Adv; 2019 May; 9(28):16028-16034. PubMed ID: 35521416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.