These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29032742)

  • 1. Enhanced cyanide biodegradation by immobilized crude extract of Rhodococcus UKMP-5M.
    Maniyam MN; Ibrahim AL; Cass AEG
    Environ Technol; 2019 Jan; 40(3):386-398. PubMed ID: 29032742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.
    Nallapan Maniyam M; Sjahrir F; Latif Ibrahim A; Cass AE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):357-64. PubMed ID: 25723061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.
    Nallapan Maniyam M; Sjahrir F; Ibrahim AL; Cass AE
    J Gen Appl Microbiol; 2013; 59(6):393-404. PubMed ID: 24492598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M.
    Suhaila YN; Rosfarizan M; Ahmad SA; Abdul Latif I; Ariff AB
    J Environ Biol; 2013 May; 34(3):635-43. PubMed ID: 24617152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of Phenol Using the Indigenous Rhodococcus pyridinivorans Strain PDB9T NS-1 Immobilized in Calcium Alginate Beads.
    Priyadarshini A; Mishra S; Sahoo NK; Raut S; Daverey A; Tripathy BC
    Appl Biochem Biotechnol; 2024 May; 196(5):2798-2818. PubMed ID: 37126112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose.
    Guzik U; Hupert-Kocurek K; Krysiak M; Wojcieszyńska D
    Biomed Res Int; 2014; 2014():138768. PubMed ID: 24693536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decolourization and biodegradation of azo dye methyl red by
    Maniyam MN; Ibrahim AL; Cass AEG
    Environ Technol; 2020 Jan; 41(1):71-85. PubMed ID: 29923786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.
    Zhou X; Liu L; Chen Y; Xu S; Chen J
    Can J Microbiol; 2007 Sep; 53(9):1033-7. PubMed ID: 18026223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.
    Bilal M; Asgher M
    BMC Biotechnol; 2015 Dec; 15():111. PubMed ID: 26654190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilities of immobilized beta-galactosidase of Aspergillus sp. AF for the optimal production of galactooligosaccharides from lactose.
    Feng Y; Chang X; Wang W; Ma R
    Artif Cells Blood Substit Immobil Biotechnol; 2010; 38(1):43-51. PubMed ID: 20082600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of naringinase in PVA-alginate matrix using an innovative technique.
    Nunes MA; Vila-Real H; Fernandes PC; Ribeiro MH
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2129-47. PubMed ID: 19690984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads.
    Vancov T; Jury K; Rice N; Van Zwieten L; Morris S
    J Appl Microbiol; 2007 Jan; 102(1):212-20. PubMed ID: 17184337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite.
    Shahabivand S; Mortazavi SS; Mahdavinia GR; Darvishi F
    J Environ Manage; 2022 Apr; 307():114586. PubMed ID: 35085972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of cyanide in cassava wastewater using a novel thermodynamically-stable immobilized rhodanese.
    Ademakinwa AN; Agunbiade MO; Fagbohun O
    Prep Biochem Biotechnol; 2021; 51(6):607-617. PubMed ID: 33206023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of fungal extracellular alpha-amylase from Fusarium solani immobilized in calcium alginate beads.
    Kumar D; Muthukumar M; Garg N
    J Environ Biol; 2012 Nov; 33(6):1021-5. PubMed ID: 23741795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization.
    Eldin MS; Seuror EI; Nasr MA; Tieama HA
    Appl Biochem Biotechnol; 2011 May; 164(1):45-57. PubMed ID: 21063806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of selected physical parameters on the biodegradation of acrylamide by immobilized cells of Rhodococcus sp.
    Nawaz MS; Billedeau SM; Cerniglia CE
    Biodegradation; 1998; 9(5):381-7. PubMed ID: 10192898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of alpha-amylase immobilization in calcium alginate beads.
    Ertan F; Yagar H; Balkan B
    Prep Biochem Biotechnol; 2007; 37(3):195-204. PubMed ID: 17516249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads.
    Dey K; Roy P
    Biotechnol Lett; 2011 Jun; 33(6):1101-5. PubMed ID: 21327703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature.
    Jampala P; Preethi M; Ramanujam S; Harish BS; Uppuluri KB; Anbazhagan V
    Int J Biol Macromol; 2017 Feb; 95():843-849. PubMed ID: 27940337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.