These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29033287)

  • 1. Rotamer Libraries for the High-Resolution Design of β-Amino Acid Foldamers.
    Watkins AM; Craven TW; Renfrew PD; Arora PS; Bonneau R
    Structure; 2017 Nov; 25(11):1771-1780.e3. PubMed ID: 29033287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein design using continuous rotamers.
    Gainza P; Roberts KE; Donald BR
    PLoS Comput Biol; 2012 Jan; 8(1):e1002335. PubMed ID: 22279426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design.
    Renfrew PD; Choi EJ; Bonneau R; Kuhlman B
    PLoS One; 2012; 7(3):e32637. PubMed ID: 22431978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries.
    Huang X; Pearce R; Zhang Y
    J Chem Inf Model; 2020 Jan; 60(1):410-420. PubMed ID: 31851497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A backbone-dependent rotamer library with high (ϕ, ψ) coverage using metadynamics simulations.
    Mortensen JC; Damjanovic J; Miao J; Hui T; Lin YS
    Protein Sci; 2022 Dec; 31(12):e4491. PubMed ID: 36327064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do rotamer libraries reproduce the side-chain conformations of peptidic ligands from the PDB?
    Pupo A; Moreno E
    J Mol Graph Model; 2009 Jan; 27(5):611-9. PubMed ID: 19028123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Design of Ligand Binding Proteins.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2017; 1529():363-373. PubMed ID: 27914062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generate: a program for 3-D structure generation and conformational analysis of peptides and peptidomimetics.
    Bultinck P; Augustynen S; Hilbers HW; Moret EE; Tollenaere JP
    J Comput Chem; 2002 May; 23(7):746-54. PubMed ID: 11948593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps.
    Stapley BJ; Doig AJ
    J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LUTE (Local Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design with General Energy Functions and Rigid Rotamer-Like Efficiency.
    Hallen MA; Jou JD; Donald BR
    J Comput Biol; 2017 Jun; 24(6):536-546. PubMed ID: 27681371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics-derived rotamer libraries for d-amino acids within homochiral and heterochiral polypeptides.
    Childers MC; Towse CL; Daggett V
    Protein Eng Des Sel; 2018 Jun; 31(6):191-204. PubMed ID: 29992252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a rotamer library for use in beta-peptide foldamer computational design.
    Shandler SJ; Shapovalov MV; Dunbrack RL; DeGrado WF
    J Am Chem Soc; 2010 Jun; 132(21):7312-20. PubMed ID: 20446685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Sequence-Dependent Rotamer Information in Global Optimization of Proteins.
    Dicks L; Wales DJ
    J Phys Chem B; 2022 Oct; 126(42):8381-8390. PubMed ID: 36257022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking a computational design method for the incorporation of metal ion-binding sites at symmetric protein interfaces.
    Hansen WA; Khare SD
    Protein Sci; 2017 Aug; 26(8):1584-1594. PubMed ID: 28513090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A protein-dependent side-chain rotamer library.
    Bhuyan MS; Gao X
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S10. PubMed ID: 22373394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library.
    Peterson RW; Dutton PL; Wand AJ
    Protein Sci; 2004 Mar; 13(3):735-51. PubMed ID: 14978310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotamer libraries and probabilities of transition between rotamers for the side chains in protein-protein binding.
    Kirys T; Ruvinsky AM; Tuzikov AV; Vakser IA
    Proteins; 2012 Aug; 80(8):2089-98. PubMed ID: 22544766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a rotamer library for coarse-grained models in protein-folding simulations.
    Larriva M; Rey A
    J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions.
    Shapovalov MV; Dunbrack RL
    Structure; 2011 Jun; 19(6):844-58. PubMed ID: 21645855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using quantum mechanics to improve estimates of amino acid side chain rotamer energies.
    Renfrew PD; Butterfoss GL; Kuhlman B
    Proteins; 2008 Jun; 71(4):1637-46. PubMed ID: 18076032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.