These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 29033922)
21. Chickpea (Cicer arietinum L.) Seeds as a Reservoir of Endophytic Plant Growth-Promoting Bacteria. Laranjeira SS; Alves IG; Marques G Curr Microbiol; 2022 Jul; 79(9):277. PubMed ID: 35907956 [TBL] [Abstract][Full Text] [Related]
22. Phenotypic and Genotypic Diversity Among Symbiotic and Non-symbiotic Bacteria Present in Chickpea Nodules in Morocco. Benjelloun I; Thami Alami I; Douira A; Udupa SM Front Microbiol; 2019; 10():1885. PubMed ID: 31620094 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137 [TBL] [Abstract][Full Text] [Related]
24. Reconnoitering the capabilities of nodule endophytic Pantoea dispersa for improved nodulation and grain yield of chickpea (Cicer arietinum L.). Tariq M; Hasnain N; Rasul I; Asad MA; Javed A; Rashid K; Shafique J; Iram W; Hameed A; Zafar M World J Microbiol Biotechnol; 2023 Jan; 39(3):85. PubMed ID: 36705812 [TBL] [Abstract][Full Text] [Related]
25. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. Lastochkina O; Aliniaeifard S; Garshina D; Garipova S; Pusenkova L; Allagulova C; Fedorova K; Baymiev A; Koryakov I; Sobhani M J Plant Physiol; 2021 Aug; 263():153462. PubMed ID: 34225178 [TBL] [Abstract][Full Text] [Related]
26. Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Brígido C; Menéndez E; Paço A; Glick BR; Belo A; Félix MR; Oliveira S; Carvalho M Microorganisms; 2019 Sep; 7(10):. PubMed ID: 31557944 [TBL] [Abstract][Full Text] [Related]
27. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Shreya D; Jinal HN; Kartik VP; Amaresan N Arch Microbiol; 2020 May; 202(4):887-894. PubMed ID: 31893290 [TBL] [Abstract][Full Text] [Related]
28. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. Esfahani MN; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS Plant Biotechnol J; 2014 Apr; 12(3):387-97. PubMed ID: 24267445 [TBL] [Abstract][Full Text] [Related]
29. Fusarium solani and Fusarium oxysporum Associated with Root Rot of Glycyrrhiza uralensis in China. Cao XM; Cai J; Li SB; Zhang H; Lu ZQ; Hu XP Plant Dis; 2013 Nov; 97(11):1514. PubMed ID: 30708454 [TBL] [Abstract][Full Text] [Related]
30. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Egamberdieva D; Jabborova D; Hashem A Saudi J Biol Sci; 2015 Nov; 22(6):773-9. PubMed ID: 26587006 [TBL] [Abstract][Full Text] [Related]
31. Soil Amendment With Different Maize Biochars Improves Chickpea Growth Under Different Moisture Levels by Improving Symbiotic Performance With Egamberdieva D; Li L; Ma H; Wirth S; Bellingrath-Kimura SD Front Microbiol; 2019; 10():2423. PubMed ID: 31749774 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of biocontrol efficacy of rhizosphere dwelling bacteria for management of Fusarium wilt and Botrytis gray mold of chickpea. Bhargavi G; Arya M; Jambhulkar PP; Singh A; Rout AK; Behera BK; Chaturvedi SK; Singh AK BMC Genom Data; 2024 Jan; 25(1):7. PubMed ID: 38225553 [TBL] [Abstract][Full Text] [Related]
33. Expression of radish defensin (RsAFP2) gene in chickpea (Cicer arietinum L.) confers resistance to Fusarium wilt disease. Sadhu S; Jogam P; Gande K; Marapaka V; Penna S; Peddaboina V Mol Biol Rep; 2023 Jan; 50(1):11-18. PubMed ID: 36282461 [TBL] [Abstract][Full Text] [Related]
34. First Report of Root Rot Caused by Rhizoctonia solani AG-10 on Canola in Washington State. Schroeder KL; Paulitz TC Plant Dis; 2012 Apr; 96(4):584. PubMed ID: 30727425 [TBL] [Abstract][Full Text] [Related]
36. Desert Soil Microbes as a Mineral Nutrient Acquisition Tool for Chickpea ( Mahmood Aulakh A; Qadir G; Hassan FU; Hayat R; Sultan T; Billah M; Hussain M; Khan N Plants (Basel); 2020 Nov; 9(12):. PubMed ID: 33255160 [TBL] [Abstract][Full Text] [Related]
37. Seed-Derived Microbial Community of Wild Lalzar M; Zeevi A; Frenkel O; Gamliel A; Abbo S; Iasur Kruh L Microbiol Spectr; 2022 Jun; 10(3):e0278521. PubMed ID: 35638782 [TBL] [Abstract][Full Text] [Related]
38. Endophytic Bacillus velezensis strain B-36 is a potential biocontrol agent against lotus rot caused by Fusarium oxysporum. Wang GF; Meng JF; Tian T; Xiao XQ; Zhang B; Xiao YN J Appl Microbiol; 2020 Apr; 128(4):1153-1162. PubMed ID: 31808212 [TBL] [Abstract][Full Text] [Related]
39. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. Khan N; Bano A; Babar MDA PLoS One; 2020; 15(4):e0231426. PubMed ID: 32271848 [TBL] [Abstract][Full Text] [Related]
40. Harnessing chickpea bacterial endophytes for improved plant health and fitness. Abdullaeva Y; Mardonova G; Eshboev F; Cardinale M; Egamberdieva D AIMS Microbiol; 2024; 10(3):489-506. PubMed ID: 39219751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]