These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29034053)

  • 1. A 3D-printed microbial cell culture platform with
    Kadilak AL; Rehaag JC; Harrington CA; Shor LM
    Biomicrofluidics; 2017 Sep; 11(5):054109. PubMed ID: 29034053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of hydrogels in 3D-printed microchannels.
    Kim YT; Bohjanen S; Bhattacharjee N; Folch A
    Lab Chip; 2019 Sep; 19(18):3086-3093. PubMed ID: 31502633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration.
    Rajabi M; Cabral JD; Saunderson S; Ali MA
    J Biomed Mater Res A; 2023 Sep; 111(9):1468-1481. PubMed ID: 37066870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Standing 3D-Printed PEGDA-PANIs Electroconductive Hydrogel Composites for pH Monitoring.
    Carcione R; Pescosolido F; Montaina L; Toschi F; Orlanducci S; Tamburri E; Battistoni S
    Gels; 2023 Sep; 9(10):. PubMed ID: 37888357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Microfluidic Perfusion System for Parallel Monitoring of Hydrogel-Embedded Cell Cultures.
    Meyer KV; Winkler S; Lienig P; Dräger G; Bahnemann J
    Cells; 2023 Jul; 12(14):. PubMed ID: 37508481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects.
    Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H
    Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds.
    Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible PEGDA Resin for 3D Printing.
    Warr C; Valdoz JC; Bickham BP; Knight CJ; Franks NA; Chartrand N; Van Ry PM; Christensen KA; Nordin GP; Cook AD
    ACS Appl Bio Mater; 2020 Apr; 3(4):2239-2244. PubMed ID: 32467881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation.
    LeValley PJ; Noren B; Kharkar PM; Kloxin AM; Gatlin JC; Oakey JS
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3078-3087. PubMed ID: 31984222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties.
    Cristovão AF; Sousa D; Silvestre F; Ropio I; Gaspar A; Henriques C; Velhinho A; Baptista AC; Faustino M; Ferreira I
    3D Print Med; 2019 Aug; 5(1):12. PubMed ID: 31376049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds.
    Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of 3D-Printed Contact Lens Composed of Polyethylene Glycol Diacrylate for Controlled Release of Azithromycin.
    Goto E; Tagami T; Ogawa K; Ozeki T
    Biol Pharm Bull; 2023; 46(10):1461-1467. PubMed ID: 37779048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.