BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 29034619)

  • 1. [Induction and regulation of cellulase expression in filamentous fungi: a review].
    Zhang F; Bai F; Zhao X
    Sheng Wu Gong Cheng Xue Bao; 2016 Nov; 32(11):1481-1495. PubMed ID: 29034619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription Factor Atf1 Regulates Expression of Cellulase and Xylanase Genes during Solid-State Fermentation of Ascomycetes.
    Zhao S; Liao XZ; Wang JX; Ning YN; Li CX; Liao LS; Liu Q; Jiang Q; Gu LS; Fu LH; Yan YS; Xiong YR; He QP; Su LH; Duan CJ; Luo XM; Feng JX
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.
    Dashtban M; Schraft H; Qin W
    Int J Biol Sci; 2009 Sep; 5(6):578-95. PubMed ID: 19774110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects.
    Yang J; Yue HR; Pan LY; Feng JX; Zhao S; Suwannarangsee S; Chempreda V; Liu CG; Zhao XQ
    Bioresour Technol; 2023 Oct; 385():129449. PubMed ID: 37406833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus.
    Shida Y; Furukawa T; Ogasawara W
    Biosci Biotechnol Biochem; 2016 Sep; 80(9):1712-29. PubMed ID: 27075508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
    Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era.
    Liu G; Qin Y; Li Z; Qu Y
    Biotechnol Adv; 2013 Nov; 31(6):962-75. PubMed ID: 23507038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined strategy of transcription factor manipulation and β-glucosidase gene overexpression in Trichoderma reesei and its application in lignocellulose bioconversion.
    Xia Y; Yang L; Xia L
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):803-811. PubMed ID: 29909592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.
    Zhang J; Zhang G; Wang W; Wang W; Wei D
    Microb Cell Fact; 2018 May; 17(1):75. PubMed ID: 29773074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].
    Gutiérrez-Rojas I; Moreno-Sarmiento N; Montoya D
    Rev Iberoam Micol; 2015; 32(1):1-12. PubMed ID: 24607657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of VIB Gene on Cellulase Production of Trichoderma orientalis EU7-22.
    Han J; Xue Y; Li M; Li Y; Liu J; Gan L; Long M
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1444-1455. PubMed ID: 32114670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a Miniaturized Culture Screening for Cellulolytic Fungi and Their Agricultural Lignocellulosic Degradation.
    Arnthong J; Siamphan C; Chuaseeharonnachai C; Boonyuen N; Suwannarangsee S
    J Microbiol Biotechnol; 2020 Nov; 30(11):1670-1679. PubMed ID: 32876068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production.
    Haitjema CH; Solomon KV; Henske JK; Theodorou MK; O'Malley MA
    Biotechnol Bioeng; 2014 Aug; 111(8):1471-82. PubMed ID: 24788404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignocellulolytic Enzymes Production by Four Wild Filamentous Fungi for Olive Stones Valorization: Comparing Three Fermentation Regimens.
    Arif S; M'Barek HN; Bekaert B; Aziz MB; Diouri M; Haesaert G; Hajjaj H
    J Microbiol Biotechnol; 2024 May; 34(5):1017-1028. PubMed ID: 38803105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of Cellulase-Producing Filamentous Fungi From Tibet and Transcriptomic Analysis of a Superior Cellulase Producer
    Li JX; Zhang F; Jiang DD; Li J; Wang FL; Zhang Z; Wang W; Zhao XQ
    Front Microbiol; 2020; 11():1617. PubMed ID: 32760377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Progress in the production of lignocellulolytic enzyme systems using Penicillium species].
    Liu G; Gao L; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):1058-1069. PubMed ID: 33783168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK; Chand K; Tewari L
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.