These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29034642)

  • 1. [Construction of recombinant strains co-expressing PPK and GMAS for the synthesis of L-theanine].
    Li Y; Liu S; Zhu J
    Sheng Wu Gong Cheng Xue Bao; 2016 Dec; 32(12):1745-1749. PubMed ID: 29034642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient synthesis of γ-glutamyl compounds by co-expression of γ-glutamylmethylamide synthetase and polyphosphate kinase in engineered Escherichia coli.
    Pan X; Yu J; Du Q; Zeng S; Liu J; Jiao Q; Zhang H
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):573-583. PubMed ID: 32885332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and expression of Methylovorus mays No. 9 gene encoding gamma-glutamylmethylamide synthetase: an enzyme usable in theanine formation by coupling with the alcoholic fermentation system of baker's yeast.
    Yamamoto S; Wakayama M; Tachiki T
    Biosci Biotechnol Biochem; 2008 Jan; 72(1):101-9. PubMed ID: 18175924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of L-Theanine Using
    Yang SY; Han YH; Park YL; Park JY; No SY; Jeong D; Park S; Park HY; Kim W; Seo SO; Yang YH
    J Microbiol Biotechnol; 2020 May; 30(5):785-792. PubMed ID: 32482946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced theanine production with reduced ATP supply by alginate entrapped Escherichia coli co-expressing γ-glutamylmethylamide synthetase and polyphosphate kinase.
    Cho DH; Kim S; Lee Y; Shin Y; Choi S; Oh J; Kim HT; Park SH; Park K; Bhatia SK; Yang YH
    Enzyme Microb Technol; 2024 Apr; 175():110394. PubMed ID: 38277867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theanine production by coupled fermentation with energy transfer using gamma-glutamylmethylamide synthetase of Methylovorus mays No. 9.
    Yamamoto S; Morihara Y; Wakayama M; Tachiki T
    Biosci Biotechnol Biochem; 2008 May; 72(5):1206-11. PubMed ID: 18460808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced L-theanine production through semi-rational design of γ-glutamylmethylamide synthetase from Methylovorus mays.
    Fan C; Qi J; Cong Y; Zhang C
    Enzyme Microb Technol; 2024 Oct; 180():110481. PubMed ID: 39047348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient fermentative production of L-theanine by Corynebacterium glutamicum.
    Ma H; Fan X; Cai N; Zhang D; Zhao G; Wang T; Su R; Yuan M; Ma Q; Zhang C; Xu Q; Xie X; Chen N; Li Y
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):119-130. PubMed ID: 31776607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of theanine-forming enzyme from Methylovorus mays no. 9 in respect to utilization of theanine production.
    Yamamoto S; Wakayama M; Tachiki T
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):545-52. PubMed ID: 17284842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis.
    Gao H; Li M; Wang Q; Liu T; Zhang X; Yang T; Xu M; Rao Z
    Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):122. PubMed ID: 37537682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway engineering of
    Fan X; Zhang T; Ji Y; Li J; Long K; Yuan Y; Li Y; Xu Q; Chen N; Xie X
    Metab Eng Commun; 2020 Dec; 11():e00151. PubMed ID: 33251110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of aminoacyl prolines using the adenylation domain of nonribosomal peptide synthetase with class III polyphosphate kinase 2-mediated ATP regeneration.
    Suzuki S; Hara R; Kino K
    J Biosci Bioeng; 2018 Jun; 125(6):644-648. PubMed ID: 29366718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel one-pot ATP regeneration system based on three-enzyme cascade for industrial CTP production.
    Wang J; Zheng C; Zhang T; Liu Y; Cheng Z; Liu D; Ying H; Niu H
    Biotechnol Lett; 2017 Dec; 39(12):1875-1881. PubMed ID: 28861634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of γ-glutamylmethylamide synthetase provide insight into bacterial metabolism of oceanic monomethylamine.
    Wang N; Chen XL; Gao C; Peng M; Wang P; Zhang N; Li F; Yang GP; Shen QT; Li S; Chen Y; Zhang YZ; Li CY
    J Biol Chem; 2021; 296():100081. PubMed ID: 33199371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mevalonate-dependent enzymatic synthesis of amorphadiene driven by an ATP-regeneration system using polyphosphate kinase.
    Shimane M; Sugai Y; Kainuma R; Natsume M; Kawaide H
    Biosci Biotechnol Biochem; 2012; 76(8):1558-60. PubMed ID: 22878192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining protein and metabolic engineering strategies for high-level production of L-theanine in Corynebacterium glutamicum.
    Yang T; Zhang D; Cai M; Zhang H; Pan X; You J; Zhang X; Xu M; Rao Z
    Bioresour Technol; 2024 Feb; 394():130200. PubMed ID: 38103752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of bioactive γ-glutamyl transpeptidase in Escherichia coli using SUMO fusion partner and application of the recombinant enzyme to L-theanine synthesis.
    Wang Q; Min C; Zhu F; Xin Y; Zhang S; Luo L; Yin Z
    Curr Microbiol; 2011 May; 62(5):1535-41. PubMed ID: 21327888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions.
    Cao H; Nie K; Li C; Xu H; Wang F; Tan T; Liu L
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5325-5332. PubMed ID: 28417169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a highly efficient and specific L-theanine synthase.
    Yao J; Li J; Xiong D; Qiu Y; Shi G; Jin JM; Tao Y; Tang SY
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3417-3431. PubMed ID: 32103318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeated batch production of theanine by coupled fermentation with energy transfer using membrane-enclosed gamma-glutamylmethylamide synthetase and dried yeast cells.
    Yamamoto S; Morihara Y; Wakayama M; Tachiki T
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2800-2. PubMed ID: 19966461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.