These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 29034947)
1. Revealing the electronic character of the positive electrode/electrolyte interface in lithium-ion batteries. Zampardi G; Trocoli R; Schuhmann W; La Mantia F Phys Chem Chem Phys; 2017 Oct; 19(41):28381-28387. PubMed ID: 29034947 [TBL] [Abstract][Full Text] [Related]
2. Free-standing LiNi0.5Mn1.5O4/carbon nanofiber network film as lightweight and high-power cathode for lithium ion batteries. Fang X; Ge M; Rong J; Zhou C ACS Nano; 2014 May; 8(5):4876-82. PubMed ID: 24773079 [TBL] [Abstract][Full Text] [Related]
3. Understanding the Conductive Carbon Additive on Electrode/Electrolyte Interface Formation in Lithium-Ion Batteries via Liu S; Zeng X; Liu D; Wang S; Zhang L; Zhao R; Kang F; Li B Front Chem; 2020; 8():114. PubMed ID: 32161749 [TBL] [Abstract][Full Text] [Related]
4. Octahedral and Porous Spherical Ordered LiNi Luo Y; Zhang Y; Yan L; Xie J; Lv T ACS Appl Mater Interfaces; 2018 Sep; 10(37):31795-31803. PubMed ID: 30107726 [TBL] [Abstract][Full Text] [Related]
5. Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries. Chong J; Xun S; Zhang J; Song X; Xie H; Battaglia V; Wang R Chemistry; 2014 Jun; 20(24):7479-85. PubMed ID: 24782138 [TBL] [Abstract][Full Text] [Related]
6. Effect of Lithium Borate Additives on Cathode Film Formation in LiNi Dong Y; Young BT; Zhang Y; Yoon T; Heskett DR; Hu Y; Lucht BL ACS Appl Mater Interfaces; 2017 Jun; 9(24):20467-20475. PubMed ID: 28562011 [TBL] [Abstract][Full Text] [Related]
7. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Tang X; Jan SS; Qian Y; Xia H; Ni J; Savilov SV; Aldoshin SM Sci Rep; 2015 Jul; 5():11958. PubMed ID: 26148558 [TBL] [Abstract][Full Text] [Related]
8. Clean Solid-Electrolyte/Electrode Interfaces Double the Capacity of Solid-State Lithium Batteries. Kawasoko H; Shirasawa T; Nishio K; Shimizu R; Shiraki S; Hitosugi T ACS Appl Mater Interfaces; 2021 Feb; 13(4):5861-5865. PubMed ID: 33494591 [TBL] [Abstract][Full Text] [Related]
9. 3,3'-(Ethylenedioxy)dipropiononitrile as an Electrolyte Additive for 4.5 V LiNi Wang C; Yu L; Fan W; Liu J; Ouyang L; Yang L; Zhu M ACS Appl Mater Interfaces; 2017 Mar; 9(11):9630-9639. PubMed ID: 28221019 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Analysis for Enhancing Interface Layer of Spinel LiNi Xiao Z; Wang R; Li Y; Sun Y; Fan S; Xiong K; Zhang H; Qian Z Front Chem; 2019; 7():591. PubMed ID: 31508412 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and electrochemical properties of electrode composites for oxide-type all-solid-state batteries through electrostatic integrated assembly. Hikima K; Sato Y; Yokoi A; Tan WK; Muto H; Matsuda A Heliyon; 2023 Jul; 9(7):e17889. PubMed ID: 37449150 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis and characterization of a SnO Ma F; Geng F; Yuan A; Xu J Phys Chem Chem Phys; 2017 Apr; 19(15):9983-9991. PubMed ID: 28362012 [TBL] [Abstract][Full Text] [Related]
13. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries. Ma Y; Ma J; Chai J; Liu Z; Ding G; Xu G; Liu H; Chen B; Zhou X; Cui G; Chen L ACS Appl Mater Interfaces; 2017 Nov; 9(47):41462-41472. PubMed ID: 29112381 [TBL] [Abstract][Full Text] [Related]
14. Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging. Michalak B; Sommer H; Mannes D; Kaestner A; Brezesinski T; Janek J Sci Rep; 2015 Oct; 5():15627. PubMed ID: 26496823 [TBL] [Abstract][Full Text] [Related]
15. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
16. Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials. Cho HM; Chen MV; MacRae AC; Meng YS ACS Appl Mater Interfaces; 2015 Aug; 7(30):16231-9. PubMed ID: 26172214 [TBL] [Abstract][Full Text] [Related]
17. Atomic Layer Deposition of a Nanometer-Thick Li Hallot M; Caja-Munoz B; Leviel C; Lebedev OI; Retoux R; Avila J; Roussel P; Asensio MC; Lethien C ACS Appl Mater Interfaces; 2021 Apr; 13(13):15761-15773. PubMed ID: 33765380 [TBL] [Abstract][Full Text] [Related]
19. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes. Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038 [TBL] [Abstract][Full Text] [Related]
20. A New Strategy to Stabilize Capacity and Insight into the Interface Behavior in Electrochemical Reaction of LiNi Wang H; Xie X; Wei X; Zhang X; Zhang J; Huang Y; Li Q ACS Appl Mater Interfaces; 2017 Sep; 9(38):33274-33287. PubMed ID: 28881127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]