These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29035026)

  • 1. Schottky Barrier Height of Pd/MoS
    Dong H; Gong C; Addou R; McDonnell S; Azcatl A; Qin X; Wang W; Wang W; Hinkle CL; Wallace RM
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38977-38983. PubMed ID: 29035026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schottky Barrier Height Modulation Using Interface Characteristics of MoS
    Kim SH; Han KH; Kim GS; Kim SG; Kim J; Yu HY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6230-6237. PubMed ID: 30663311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide as a promising hole injection layer for MoSâ‚‚-based electronic devices.
    Musso T; Kumar PV; Foster AS; Grossman JC
    ACS Nano; 2014 Nov; 8(11):11432-9. PubMed ID: 25347209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS
    Moon BH; Han GH; Kim H; Choi H; Bae JJ; Kim J; Jin Y; Jeong HY; Joo MK; Lee YH; Lim SC
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11240-11246. PubMed ID: 28266221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2.
    Kaushik N; Karmakar D; Nipane A; Karande S; Lodha S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):256-63. PubMed ID: 26649572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow Schottky Barrier Height Achieved by Using Molybdenum Disulfide/Dielectric Stack for Source/Drain Contact.
    Kim SH; Han KH; Park E; Kim SG; Yu HY
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34084-34090. PubMed ID: 31429263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Schottky barrier height of the Pd-MoS2 contact by different strains.
    Liu B; Wu LJ; Zhao YQ; Wang LZ; Cai MQ
    Phys Chem Chem Phys; 2015 Oct; 17(40):27088-93. PubMed ID: 26412203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect Dominated Charge Transport and Fermi Level Pinning in MoS
    Bampoulis P; van Bremen R; Yao Q; Poelsema B; Zandvliet HJW; Sotthewes K
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19278-19286. PubMed ID: 28508628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Synthesized MoS
    Perini CJ; Basnet P; West MP; Vogel EM
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39860-39871. PubMed ID: 30350938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS
    Kim GS; Kim SH; Park J; Han KH; Kim J; Yu HY
    ACS Nano; 2018 Jun; 12(6):6292-6300. PubMed ID: 29851473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambipolar MoS
    Giannazzo F; Fisichella G; Greco G; Di Franco S; Deretzis I; La Magna A; Bongiorno C; Nicotra G; Spinella C; Scopelliti M; Pignataro B; Agnello S; Roccaforte F
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23164-23174. PubMed ID: 28603968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect-dominated doping and contact resistance in MoS2.
    McDonnell S; Addou R; Buie C; Wallace RM; Hinkle CL
    ACS Nano; 2014 Mar; 8(3):2880-8. PubMed ID: 24484444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer MoS
    Gupta S; Rortais F; Ohshima R; Ando Y; Endo T; Miyata Y; Shiraishi M
    Sci Rep; 2019 Nov; 9(1):17032. PubMed ID: 31745127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the work function of molybdenum disulfide by in situ metal deposition.
    Zhou P; Song X; Yan X; Liu C; Chen L; Sun Q; Zhang DW
    Nanotechnology; 2016 Aug; 27(34):344002. PubMed ID: 27419644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.
    Vabbina P; Choudhary N; Chowdhury AA; Sinha R; Karabiyik M; Das S; Choi W; Pala N
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15206-13. PubMed ID: 26148017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the transport properties of metal/MoS
    Guo R; Su J; Zhang P; He F; Lin Z; Zhang J; Chang J; Hao Y
    Nanotechnology; 2020 Nov; 31(48):485204. PubMed ID: 32931467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Chemistry and Band Alignment Study of Ni and Ag Contacts on MoS
    Wang X; Kim SY; Wallace RM
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15802-15810. PubMed ID: 33764063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, chemical, and electrical parameters of Au/MoS
    Padma R; Lee G; Kang JS; Jun SC
    J Colloid Interface Sci; 2019 Aug; 550():48-56. PubMed ID: 31051340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ XPS Investigation of Transformations at Crystallographically Oriented MoS
    Kondekar NP; Boebinger MG; Woods EV; McDowell MT
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32394-32404. PubMed ID: 28846377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect-Assisted Contact Property Enhancement in a Molybdenum Disulfide Monolayer.
    Chee SS; Lee JH; Lee K; Ham MH
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4129-4134. PubMed ID: 31880145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.