These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 29035028)

  • 1. Stress-Mediated Enhancement of Ionic Conductivity in Fast-Ion Conductors.
    Sagotra AK; Cazorla C
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38773-38783. PubMed ID: 29035028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanocaloric effects in superionic thin films from atomistic simulations.
    Sagotra AK; Errandonea D; Cazorla C
    Nat Commun; 2017 Oct; 8(1):963. PubMed ID: 29042557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Mechanocaloric Effects in Fluorite-Structured Superionic Materials.
    Cazorla C; Errandonea D
    Nano Lett; 2016 May; 16(5):3124-9. PubMed ID: 27070506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state superionic conductors.
    Tofanello A; Araujo JN; Nantes-Cardoso IL; Ferreira FF; Souza JA; Lim DW; Kitagawa H; Garcia W
    Colloids Surf B Biointerfaces; 2019 Apr; 176():47-54. PubMed ID: 30594058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design principles for solid-state lithium superionic conductors.
    Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G
    Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.
    Lu Z; Chen C; Baiyee ZM; Chen X; Niu C; Ciucci F
    Phys Chem Chem Phys; 2015 Dec; 17(48):32547-55. PubMed ID: 26597695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium Superionic Conductors Based on Clusters.
    Fang H; Jena P
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):963-972. PubMed ID: 30547574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Li-rich antiperovskite superionic conductors based on cluster ions.
    Fang H; Jena P
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11046-11051. PubMed ID: 28973929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Li
    Liang X; Jiang Y; Cai W; Wu S; Wang L; Lei Z; Chen J; Lei Y; Yang L; Feng J
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27029-27036. PubMed ID: 32459952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiperovskite Li
    Lü X; Howard JW; Chen A; Zhu J; Li S; Wu G; Dowden P; Xu H; Zhao Y; Jia Q
    Adv Sci (Weinh); 2016 Mar; 3(3):1500359. PubMed ID: 27812460
    [No Abstract]   [Full Text] [Related]  

  • 11. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor.
    Maekawa H; Matsuo M; Takamura H; Ando M; Noda Y; Karahashi T; Orimo S
    J Am Chem Soc; 2009 Jan; 131(3):894-5. PubMed ID: 19119813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles.
    Makiura R; Yonemura T; Yamada T; Yamauchi M; Ikeda R; Kitagawa H; Kato K; Takata M
    Nat Mater; 2009 Jun; 8(6):476-80. PubMed ID: 19448614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li-Ion Cooperative Migration and Oxy-Sulfide Synergistic Effect in Li
    Zhang B; Weng M; Lin Z; Feng Y; Yang L; Wang LW; Pan F
    Small; 2020 Mar; 16(11):e1906374. PubMed ID: 32077623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes.
    Cuan J; Zhou Y; Zhou T; Ling S; Rui K; Guo Z; Liu H; Yu X
    Adv Mater; 2019 Jan; 31(1):e1803533. PubMed ID: 30368930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational Cluster Anion Enabling Superionic Conductivity in Sodium-Rich Antiperovskite Na
    Sun Y; Wang Y; Liang X; Xia Y; Peng L; Jia H; Li H; Bai L; Feng J; Jiang H; Xie J
    J Am Chem Soc; 2019 Apr; 141(14):5640-5644. PubMed ID: 30912936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design principles for sodium superionic conductors.
    Wang S; Fu J; Liu Y; Saravanan RS; Luo J; Deng S; Sham TK; Sun X; Mo Y
    Nat Commun; 2023 Nov; 14(1):7615. PubMed ID: 37993459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability.
    Wang S; Bai Q; Nolan AM; Liu Y; Gong S; Sun Q; Mo Y
    Angew Chem Int Ed Engl; 2019 Jun; 58(24):8039-8043. PubMed ID: 30977261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superionic conductivity in the Li4C60 fulleride polymer.
    Riccò M; Belli M; Mazzani M; Pontiroli D; Quintavalle D; Jánossy A; Csányi G
    Phys Rev Lett; 2009 Apr; 102(14):145901. PubMed ID: 19392454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors.
    Oh K; Kang K
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18457-18462. PubMed ID: 32628801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity in Point Defect Distribution and Mobility in Solid Ion Conductors.
    Limon MSR; Ahmad Z
    ACS Appl Mater Interfaces; 2024 Sep; 16(38):50948-50960. PubMed ID: 39263738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.