These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 29035031)

  • 1. Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator.
    Chen H; Li B; Yang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38999-39010. PubMed ID: 29035031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps.
    Yang HX; Hallal A; Terrade D; Waintal X; Roche S; Chshiev M
    Phys Rev Lett; 2013 Jan; 110(4):046603. PubMed ID: 25166184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Electronic and Magnetic Properties of Multi-Atom Doped Black Phosphorene.
    Wang K; Wang H; Zhang M; Zhao W; Liu Y; Qin H
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30823569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and magnetic properties of doped black phosphorene with concentration dependence.
    Wang K; Wang H; Zhang M; Liu Y; Zhao W
    Beilstein J Nanotechnol; 2019; 10():993-1001. PubMed ID: 31165026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene.
    Zhuang J; Liu C; Gao Q; Liu Y; Feng H; Xu X; Wang J; Zhao J; Dou SX; Hu Z; Du Y
    ACS Nano; 2018 May; 12(5):5059-5065. PubMed ID: 29741870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Green Phosphorus with Tunable Direct Band Gap and High Mobility.
    Han WH; Kim S; Lee IH; Chang KJ
    J Phys Chem Lett; 2017 Sep; 8(18):4627-4632. PubMed ID: 28889743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hittorf's violet phosphorene as a promising candidate for optoelectronic and photocatalytic applications: first-principles characterization.
    Lu YL; Dong S; Zhou W; Dai S; Zhou B; Zhao H; Wu P
    Phys Chem Chem Phys; 2018 May; 20(17):11967-11975. PubMed ID: 29670965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pure spin current and fully spin-polarized current induced by the photogalvanic effect and spin-Seebeck effect in halogen-decorated phosphorene.
    Zheng Z; Zhu L; Cao Z; Guo X; Wang Y; Yao K
    Phys Chem Chem Phys; 2023 Feb; 25(5):3979-3985. PubMed ID: 36648405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable transport gap in phosphorene.
    Das S; Zhang W; Demarteau M; Hoffmann A; Dubey M; Roelofs A
    Nano Lett; 2014 Oct; 14(10):5733-9. PubMed ID: 25111042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substantial and stable magnetoresistance and spin conductance in phosphorene-based spintronic devices with Co electrodes.
    Chen Z; Li G; Wang H; Tang Q; Li Z
    Phys Chem Chem Phys; 2021 May; 23(17):10573-10579. PubMed ID: 33903865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice.
    Li XJ; Yu JH; Luo K; Wu ZH; Yang W
    Nanotechnology; 2018 Apr; 29(17):174001. PubMed ID: 29437157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, elastic, electronic, and optical properties of the tricycle-like phosphorene.
    Zhang Y; Wu ZF; Gao PF; Fang DQ; Zhang EH; Zhang SL
    Phys Chem Chem Phys; 2017 Jan; 19(3):2245-2251. PubMed ID: 28054071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential application of black and blue phosphorene as cathode materials in rechargeable aluminum batteries: a first-principles study.
    Xiao X; Wang M; Tu J; Jiao S
    Phys Chem Chem Phys; 2019 Mar; 21(13):7021-7028. PubMed ID: 30869709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching a normal insulator into a topological insulator via electric field with application to phosphorene.
    Liu Q; Zhang X; Abdalla LB; Fazzio A; Zunger A
    Nano Lett; 2015 Feb; 15(2):1222-8. PubMed ID: 25607525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pressure and strain on spin polarization of IrMnSb.
    Tutic I; Herran J; Staten B; Gray P; Paudel TR; Sokolov A; Tsymbal EY; Lukashev PV
    J Phys Condens Matter; 2017 Feb; 29(7):075801. PubMed ID: 28032618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Ripple Deformation in Phosphorene.
    Kou L; Ma Y; Smith SC; Chen C
    J Phys Chem Lett; 2015 May; 6(9):1509-13. PubMed ID: 26263304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrous red phosphorene: a promising two-dimensional optoelectronic and photocatalytic material with a desirable band gap and high carrier mobility.
    Lu YL; Dong S; Li J; Wu Y; Wang L; Zhao H
    Phys Chem Chem Phys; 2020 Jun; 22(24):13713-13720. PubMed ID: 32525501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.