BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29035219)

  • 1. An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications.
    Yan B; Nirenberg S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):233-243. PubMed ID: 29035219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Neural Signals Decoding onto Off-the-Shelf DSP Processors for Neuroprosthetic Applications.
    Pani D; Barabino G; Citi L; Meloni P; Raspopovic S; Micera S; Raffo L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):993-1002. PubMed ID: 27164593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-Loop Optogenetic Brain Interface.
    Pashaie R; Baumgartner R; Richner TJ; Brodnick SK; Azimipour M; Eliceiri KW; Williams JC
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2327-37. PubMed ID: 26011877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A processing platform for optoelectronic/optogenetic retinal prosthesis.
    Al-Atabany W; McGovern B; Mehran K; Berlinguer-Palmini R; Degenaar P
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):781-91. PubMed ID: 22127992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system for optically controlling neural circuits with very high spatial and temporal resolution.
    Pandarinath C; Carlson ET; Nirenberg S
    Proc IEEE Int Symp Bioinformatics Bioeng; 2013 Nov; 2013():. PubMed ID: 25699292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation.
    Mosbacher Y; Khoyratee F; Goldin M; Kanner S; Malakai Y; Silva M; Grassia F; Simon YB; Cortes J; Barzilai A; Levi T; Bonifazi P
    Sci Rep; 2020 May; 10(1):7512. PubMed ID: 32371937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.
    Fang-Yen C; Alkema MJ; Samuel AD
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140212. PubMed ID: 26240427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Based Neuronal Activation: The Future of Cranial Nerve Stimulation.
    Kozin ED; Brown MC; Lee DJ; Stankovic KM
    Otolaryngol Clin North Am; 2020 Feb; 53(1):171-183. PubMed ID: 31739905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The state of the art of biomedical applications of optogenetics.
    Keshmiri Neghab H; Soheilifar MH; Grusch M; Ortega MM; Esmaeeli Djavid G; Saboury AA; Goliaei B
    Lasers Surg Med; 2022 Feb; 54(2):202-216. PubMed ID: 34363230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress on key technology of power and signal transmission in neuroprosthetic].
    Wang X; Peng C; Liu T; Wang R; Hou W; Zheng X; Zheng E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Oct; 28(5):1040-2, 1051. PubMed ID: 22097279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Engineering Platform for Clinical Application of Optogenetic Therapy in Retinal Degenerative Diseases.
    Yan B; Nirenberg S
    IEEE J Transl Eng Health Med; 2023; 11():296-305. PubMed ID: 37250684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Retinal Processing for High-Resolution Optogenetic Stimulation Device.
    Zarif NE; Montazeri L; Sawan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5946-5949. PubMed ID: 30441690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications.
    Raghunathan S; Gupta SK; Markandeya HS; Roy K; Irazoqui PP
    J Neurosci Methods; 2010 Oct; 193(1):106-17. PubMed ID: 20713084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-loop optical neural stimulation based on a 32-channel low-noise recording system with online spike sorting.
    Nguyen TK; Navratilova Z; Cabral H; Wang L; Gielen G; Battaglia FP; Bartic C
    J Neural Eng; 2014 Aug; 11(4):046005. PubMed ID: 24891498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-Probe Neural Interface ASIC for Combined Electrical Recording and Optogenetic Stimulation.
    Ramezani R; Liu Y; Dehkhoda F; Soltan A; Haci D; Zhao H; Firfilionis D; Hazra A; Cunningham MO; Jackson A; Constandinou TG; Degenaar P
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):576-588. PubMed ID: 29877821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and manufacturing challenges of optogenetic neural interfaces: a review.
    Goncalves SB; Ribeiro JF; Silva AF; Costa RM; Correia JH
    J Neural Eng; 2017 Aug; 14(4):041001. PubMed ID: 28452331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NInFEA: an embedded framework for the real-time evaluation of fetal ECG extraction algorithms.
    Pani D; Barabino G; Raffo L
    Biomed Tech (Berl); 2013 Feb; 58(1):13-26. PubMed ID: 23314497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.