These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29035294)

  • 21. Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore.
    Schütz AK; Hornemann S; Wälti MA; Greuter L; Tiberi C; Cadalbert R; Gantner M; Riek R; Hammarström P; Nilsson KPR; Böckmann A; Aguzzi A; Meier BH
    ACS Chem Neurosci; 2018 Mar; 9(3):475-481. PubMed ID: 29178774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AmyPro: a database of proteins with validated amyloidogenic regions.
    Varadi M; De Baets G; Vranken WF; Tompa P; Pancsa R
    Nucleic Acids Res; 2018 Jan; 46(D1):D387-D392. PubMed ID: 29040693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Advances in plant proteomics. II. Application of proteome techniques to plant biology research].
    Ruan SL; Ma HS; Wang SH; Xin Y; Qian LH; Tong JX; Zhao HP; Wang J
    Yi Chuan; 2006 Dec; 28(12):1633-48. PubMed ID: 17138554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes.
    Rodríguez-Celma J; Ceballos-Laita L; Grusak MA; Abadía J; López-Millán AF
    Biochim Biophys Acta; 2016 Aug; 1864(8):991-1002. PubMed ID: 27033031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soluble Assemblies in the Fibrillation Pathway of Prion-Inspired Artificial Functional Amyloids are Highly Cytotoxic.
    Díaz-Caballero M; Navarro S; Ventura S
    Biomacromolecules; 2020 Jun; 21(6):2334-2345. PubMed ID: 32227922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PrionScan: an online database of predicted prion domains in complete proteomes.
    Espinosa Angarica V; Angulo A; Giner A; Losilla G; Ventura S; Sancho J
    BMC Genomics; 2014 Feb; 15():102. PubMed ID: 24498877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is it possible to predict amyloidogenic regions from sequence alone?
    Galzitskaya OV; Garbuzynskiy SO; Lobanov MY
    J Bioinform Comput Biol; 2006 Apr; 4(2):373-88. PubMed ID: 16819789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of Amyloid Polymorphism on Prion-Chaperone Interactions in Yeast.
    Killian AN; Miller SC; Hines JK
    Viruses; 2019 Apr; 11(4):. PubMed ID: 30995727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Associative Memory, Water Mediated, Structure and Energy Model (AWSEM)-Amylometer: Predicting Amyloid Propensity and Fibril Topology Using an Optimized Folding Landscape Model.
    Chen M; Schafer NP; Zheng W; Wolynes PG
    ACS Chem Neurosci; 2018 May; 9(5):1027-1039. PubMed ID: 29241326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rooteomics: the challenge of discovering plant defense-related proteins in roots.
    Mehta A; Magalhães BS; Souza DS; Vasconcelos EA; Silva LP; Grossi-de-Sa MF; Franco OL; da Costa PH; Rocha TL
    Curr Protein Pept Sci; 2008 Apr; 9(2):108-16. PubMed ID: 18393883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation.
    Bhasne K; Mukhopadhyay S
    Proteomics; 2018 Nov; 18(21-22):e1800059. PubMed ID: 30216674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amyloid Proteins in Plant-Associated Microbial Communities.
    Gómez-Pérez D; Chaudhry V; Kemen A; Kemen E
    Microb Physiol; 2021; 31(2):88-98. PubMed ID: 34107493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging Paradigms for Synthetic Design of Functional Amyloids.
    Wang Y; Pu J; An B; Lu TK; Zhong C
    J Mol Biol; 2018 Oct; 430(20):3720-3734. PubMed ID: 29702108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amyloids: Regulators of Metal Homeostasis in the Synapse.
    Kawahara M; Kato-Negishi M; Tanaka KI
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32210005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.
    Shaykhalishahi H; Mirecka EA; Gauhar A; Grüning CS; Willbold D; Härd T; Stoldt M; Hoyer W
    Chembiochem; 2015 Feb; 16(3):411-4. PubMed ID: 25557164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amyloids: from Pathogenesis to Function.
    Nizhnikov AA; Antonets KS; Inge-Vechtomov SG
    Biochemistry (Mosc); 2015 Sep; 80(9):1127-44. PubMed ID: 26555466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.
    Langlois CR; Pei F; Sindi SS; Serio TR
    PLoS Genet; 2016 Nov; 12(11):e1006417. PubMed ID: 27814358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitination and SUMOylation of Amyloid and Amyloid-like Proteins in Health and Disease.
    Ford L; Fioriti L; Kandel ER
    Curr Issues Mol Biol; 2020; 35():195-230. PubMed ID: 31422940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins.
    Zhang Y; Man VH; Roland C; Sagui C
    ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.