These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29035294)

  • 41. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates.
    Velizhanina ME; Galkin AP
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cross-talk between amyloidogenic proteins in type-2 diabetes and Parkinson's disease.
    Horvath I; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12473-12477. PubMed ID: 27791129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteomic dissection of plant responses to various pathogens.
    Fang X; Chen J; Dai L; Ma H; Zhang H; Yang J; Wang F; Yan C
    Proteomics; 2015 May; 15(9):1525-43. PubMed ID: 25641875
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Redox proteomics for the assessment of redox-related posttranslational regulation in plants.
    Mock HP; Dietz KJ
    Biochim Biophys Acta; 2016 Aug; 1864(8):967-73. PubMed ID: 26784836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteomic screening for amyloid proteins.
    Nizhnikov AA; Alexandrov AI; Ryzhova TA; Mitkevich OV; Dergalev AA; Ter-Avanesyan MD; Galkin AP
    PLoS One; 2014; 9(12):e116003. PubMed ID: 25549323
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stem-forming regions that are essential for the amyloidogenesis of prion proteins.
    Saiki M; Hidaka Y; Nara M; Morii H
    Biochemistry; 2012 Feb; 51(8):1566-76. PubMed ID: 22324778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3.
    Moscarelli P; Boraldi F; Bochicchio B; Pepe A; Salvi AM; Quaglino D
    Matrix Biol; 2014 Jun; 36():15-27. PubMed ID: 24686253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative proteomics of seed maturation in oilseeds reveals differences in intermediary metabolism.
    Hajduch M; Matusova R; Houston NL; Thelen JJ
    Proteomics; 2011 May; 11(9):1619-29. PubMed ID: 21413150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plant cell organelle proteomics in response to abiotic stress.
    Hossain Z; Nouri MZ; Komatsu S
    J Proteome Res; 2012 Jan; 11(1):37-48. PubMed ID: 22029473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance.
    Jacoby RP; Millar AH; Taylor NL
    J Proteome Res; 2010 Dec; 9(12):6595-604. PubMed ID: 21043471
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides.
    Jean L; Foley AC; Vaux DJT
    Biomolecules; 2017 Sep; 7(4):. PubMed ID: 28937634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amyloid-binding proteins: affinity-based separation, proteomic identification, and optical biosensor validation.
    Medvedev A; Buneeva O; Kopylov A; Gnedenko O; Ivanov A; Zgoda V; Makarov AA
    Methods Mol Biol; 2015; 1295():465-77. PubMed ID: 25820741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein-solvent interfaces in human Y145Stop prion protein amyloid fibrils probed by paramagnetic solid-state NMR spectroscopy.
    Aucoin D; Xia Y; Theint T; Nadaud PS; Surewicz K; Surewicz WK; Jaroniec CP
    J Struct Biol; 2019 Apr; 206(1):36-42. PubMed ID: 29679649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The integration of chloroplast protein targeting with plant developmental and stress responses.
    Richardson LGL; Singhal R; Schnell DJ
    BMC Biol; 2017 Dec; 15(1):118. PubMed ID: 29216893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Biological functions of amyloids: facts and hypotheses].
    Mironova LN; Goginashvili AI; Ter-Avanesian MD
    Mol Biol (Mosk); 2008; 42(5):798-808. PubMed ID: 18988529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The signal distinguishing between targeting of outer membrane β-barrel protein to plastids and mitochondria in plants.
    Klinger A; Gosch V; Bodensohn U; Ladig R; Schleiff E
    Biochim Biophys Acta Mol Cell Res; 2019 Apr; 1866(4):663-672. PubMed ID: 30633951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification.
    Bondarev SA; Antonets KS; Kajava AV; Nizhnikov AA; Zhouravleva GA
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.