These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29035355)

  • 1. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics.
    Weiss M; Frohnmayer JP; Benk LT; Haller B; Janiesch JW; Heitkamp T; Börsch M; Lira RB; Dimova R; Lipowsky R; Bodenschatz E; Baret JC; Vidakovic-Koch T; Sundmacher K; Platzman I; Spatz JP
    Nat Mater; 2018 Jan; 17(1):89-96. PubMed ID: 29035355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells.
    Lussier F; Schröter M; Diercks NJ; Jahnke K; Weber C; Frey C; Platzman I; Spatz JP
    ACS Synth Biol; 2022 Jan; 11(1):366-382. PubMed ID: 34889607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics.
    Staufer O; Schröter M; Platzman I; Spatz JP
    Small; 2020 Jul; 16(27):e1906424. PubMed ID: 32078238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line.
    Matosevic S; Paegel BM
    J Am Chem Soc; 2011 Mar; 133(9):2798-800. PubMed ID: 21309555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile and Programmable Capillary-Induced Assembly of Prototissues via Hanging Drop Arrays.
    Qi C; Ma X; Zhong J; Fang J; Huang Y; Deng X; Kong T; Liu Z
    ACS Nano; 2023 Sep; 17(17):16787-16797. PubMed ID: 37639562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom-up assembly of target-specific cytotoxic synthetic cells.
    Hernandez Bücher JE; Staufer O; Ostertag L; Mersdorf U; Platzman I; Spatz JP
    Biomaterials; 2022 Jun; 285():121522. PubMed ID: 35500392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Chip Octanol-Assisted Liposome Assembly for Bioengineering.
    Chen C; Ganar KA; Deshpande S
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 37010275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics.
    Bai S; Debnath S; Gibson K; Schlicht B; Bayne L; Zagnoni M; Ulijn RV
    Small; 2014 Jan; 10(2):285-93. PubMed ID: 23913836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Formation of Monodisperse Coacervate Organelles in Liposomes.
    Deng NN; Huck WTS
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9736-9740. PubMed ID: 28658517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DNA Segregation Module for Synthetic Cells.
    Tran MP; Chatterjee R; Dreher Y; Fichtler J; Jahnke K; Hilbert L; Zaburdaev V; Göpfrich K
    Small; 2023 Mar; 19(13):e2202711. PubMed ID: 35971190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles.
    Hadorn M; Boenzli E; Sørensen KT; De Lucrezia D; Hanczyc MM; Yomo T
    Langmuir; 2013 Dec; 29(49):15309-19. PubMed ID: 24294899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New opportunities for creating man-made bioarchitectures utilizing microfluidics.
    Damiati S
    Biomed Microdevices; 2019 Jul; 21(3):62. PubMed ID: 31273471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocoalescence of Water-in-Oil Droplets with a Continuous Aqueous Phase: Implementation of Controlled Content Release.
    Frey C; Göpfrich K; Pashapour S; Platzman I; Spatz JP
    ACS Omega; 2020 Apr; 5(13):7529-7536. PubMed ID: 32280896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Artificial Cell Models Using Microfluidic Technology and Synthetic Biology.
    Kamiya K
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering bio-mimicking functional vesicles with multiple compartments for quantifying molecular transport.
    Mohanan G; Nair KS; Nampoothiri KM; Bajaj H
    Chem Sci; 2020 Apr; 11(18):4669-4679. PubMed ID: 34122921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.
    Elani Y
    Biochem Soc Trans; 2016 Jun; 44(3):723-30. PubMed ID: 27284034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.