These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 29035362)
1. Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding. Braun M; Lansky Z; Szuba A; Schwarz FW; Mitra A; Gao M; Lüdecke A; Ten Wolde PR; Diez S Nat Chem Biol; 2017 Dec; 13(12):1245-1252. PubMed ID: 29035362 [TBL] [Abstract][Full Text] [Related]
2. Kinesin-14 motors drive a right-handed helical motion of antiparallel microtubules around each other. Mitra A; Meißner L; Gandhimathi R; Renger R; Ruhnow F; Diez S Nat Commun; 2020 May; 11(1):2565. PubMed ID: 32444784 [TBL] [Abstract][Full Text] [Related]
3. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Cai S; Weaver LN; Ems-McClung SC; Walczak CE Mol Biol Cell; 2009 Mar; 20(5):1348-59. PubMed ID: 19116309 [TBL] [Abstract][Full Text] [Related]
4. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Braun M; Lansky Z; Fink G; Ruhnow F; Diez S; Janson ME Nat Cell Biol; 2011 Sep; 13(10):1259-64. PubMed ID: 21892183 [TBL] [Abstract][Full Text] [Related]
5. Theory of antiparallel microtubule overlap stabilization by motors and diffusible crosslinkers. Lera-Ramirez M; Nédélec FJ Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):600-610. PubMed ID: 31658404 [TBL] [Abstract][Full Text] [Related]
6. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. Wijeratne S; Subramanian R Elife; 2018 Oct; 7():. PubMed ID: 30353849 [TBL] [Abstract][Full Text] [Related]
7. The human kinesin-14 HSET tracks the tips of growing microtubules in vitro. Braun M; Lansky Z; Bajer S; Fink G; Kasprzak AA; Diez S Cytoskeleton (Hoboken); 2013 Sep; 70(9):515-21. PubMed ID: 24039245 [TBL] [Abstract][Full Text] [Related]
8. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles. Drechsler H; McAinsh AD Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1635-44. PubMed ID: 26969727 [TBL] [Abstract][Full Text] [Related]
9. Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions. Roos WH; Campàs O; Montel F; Woehlke G; Spatz JP; Bassereau P; Cappello G Phys Biol; 2008 Nov; 5(4):046004. PubMed ID: 19029597 [TBL] [Abstract][Full Text] [Related]
10. A dynamical model of kinesin-microtubule motility assays. Gibbons F; Chauwin JF; Despósito M; José JV Biophys J; 2001 Jun; 80(6):2515-26. PubMed ID: 11371430 [TBL] [Abstract][Full Text] [Related]
11. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. Hentrich C; Surrey T J Cell Biol; 2010 May; 189(3):465-80. PubMed ID: 20439998 [TBL] [Abstract][Full Text] [Related]
12. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. Liu X; Rao L; Qiu W; Berger F; Gennerich A Nat Commun; 2024 Aug; 15(1):6564. PubMed ID: 39095439 [TBL] [Abstract][Full Text] [Related]
13. Microtubule organization by kinesin motors and microtubule crosslinking protein MAP65. Pringle J; Muthukumar A; Tan A; Crankshaw L; Conway L; Ross JL J Phys Condens Matter; 2013 Sep; 25(37):374103. PubMed ID: 23945219 [TBL] [Abstract][Full Text] [Related]
14. A nonmotor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding. Weinger JS; Qiu M; Yang G; Kapoor TM Curr Biol; 2011 Jan; 21(2):154-60. PubMed ID: 21236672 [TBL] [Abstract][Full Text] [Related]
15. Fluctuation in the microtubule sliding movement driven by kinesin in vitro. Imafuku Y; Toyoshima YY; Tawada K Biophys J; 1996 Feb; 70(2):878-86. PubMed ID: 8789105 [TBL] [Abstract][Full Text] [Related]