These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 29035528)
1. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn (Hippophaë rhamnoides L.) Berries. Ma X; Yang W; Laaksonen O; Nylander M; Kallio H; Yang B J Agric Food Chem; 2017 Nov; 65(45):9871-9879. PubMed ID: 29035528 [TBL] [Abstract][Full Text] [Related]
2. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophaë rhamnoides L. varieties. Pop RM; Socaciu C; Pintea A; Buzoianu AD; Sanders MG; Gruppen H; Vincken JP Phytochem Anal; 2013; 24(5):484-92. PubMed ID: 24038430 [TBL] [Abstract][Full Text] [Related]
3. Sensory profile of ethyl β-d-glucopyranoside and its contribution to quality of sea buckthorn (Hippophaë rhamnoides L.). Ma X; Laaksonen O; Heinonen J; Sainio T; Kallio H; Yang B Food Chem; 2017 Oct; 233():263-272. PubMed ID: 28530574 [TBL] [Abstract][Full Text] [Related]
4. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Ma X; Laaksonen O; Zheng J; Yang W; Trépanier M; Kallio H; Yang B Food Chem; 2016 Jun; 200():189-98. PubMed ID: 26830578 [TBL] [Abstract][Full Text] [Related]
5. Sea Buckthorn (Hippophaë rhamnoides ssp. rhamnoides) Berries in Nordic Environment: Compositional Response to Latitude and Weather Conditions. Zheng J; Kallio H; Yang B J Agric Food Chem; 2016 Jun; 64(24):5031-44. PubMed ID: 27215398 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries. Teleszko M; Wojdyło A; Rudzińska M; Oszmiański J; Golis T J Agric Food Chem; 2015 Apr; 63(16):4120-9. PubMed ID: 25893239 [TBL] [Abstract][Full Text] [Related]
7. Proanthocyanidins in Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Origins with Special Reference to the Influence of Genetic Background and Growth Location. Yang W; Laaksonen O; Kallio H; Yang B J Agric Food Chem; 2016 Feb; 64(6):1274-82. PubMed ID: 26798947 [TBL] [Abstract][Full Text] [Related]
8. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. Chen C; Zhang H; Xiao W; Yong ZP; Bai N J Chromatogr A; 2007 Jun; 1154(1-2):250-9. PubMed ID: 17449044 [TBL] [Abstract][Full Text] [Related]
9. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n). Rösch D; Krumbein A; Mügge C; Kroh LW J Agric Food Chem; 2004 Jun; 52(13):4039-46. PubMed ID: 15212446 [TBL] [Abstract][Full Text] [Related]
10. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Tkacz K; Wojdyło A; Turkiewicz IP; Ferreres F; Moreno DA; Nowicka P Food Chem; 2020 Mar; 309():125766. PubMed ID: 31718836 [TBL] [Abstract][Full Text] [Related]
11. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. Rösch D; Bergmann M; Knorr D; Kroh LW J Agric Food Chem; 2003 Jul; 51(15):4233-9. PubMed ID: 12848490 [TBL] [Abstract][Full Text] [Related]
12. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Guo R; Guo X; Li T; Fu X; Liu RH Food Chem; 2017 Apr; 221():997-1003. PubMed ID: 27979305 [TBL] [Abstract][Full Text] [Related]
13. Effects of latitude and weather conditions on proanthocyanidins in berries of Finnish wild and cultivated sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides). Yang W; Laaksonen O; Kallio H; Yang B Food Chem; 2017 Feb; 216():87-96. PubMed ID: 27596396 [TBL] [Abstract][Full Text] [Related]
14. Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion. Lehtonen HM; Lehtinen O; Suomela JP; Viitanen M; Kallio H J Agric Food Chem; 2010 Jan; 58(1):620-7. PubMed ID: 20050706 [TBL] [Abstract][Full Text] [Related]
16. Proanthocyanidins in wild sea buckthorn (Hippophaë rhamnoides) berries analyzed by reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography with UV and MS detection. Kallio H; Yang W; Liu P; Yang B J Agric Food Chem; 2014 Aug; 62(31):7721-9. PubMed ID: 25061802 [TBL] [Abstract][Full Text] [Related]
17. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.). Fatima T; Kesari V; Watt I; Wishart D; Todd JF; Schroeder WR; Paliyath G; Krishna P Phytochemistry; 2015 Oct; 118():181-91. PubMed ID: 26318327 [TBL] [Abstract][Full Text] [Related]
18. On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from Hippophaë rhamnoides L. berries. Michel T; Destandau E; Elfakir C J Chromatogr A; 2011 Sep; 1218(36):6173-8. PubMed ID: 21315362 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Tkacz K; Chmielewska J; Turkiewicz IP; Nowicka P; Wojdyło A Food Chem; 2020 Dec; 332():127382. PubMed ID: 32619943 [TBL] [Abstract][Full Text] [Related]
20. Metabolomics provide a novel interpretation of the changes in flavonoids during sea buckthorn (Hippophae rhamnoides L.) drying. Geng Z; Wang J; Zhu L; Yu X; Zhang Q; Li M; Hu B; Yang X Food Chem; 2023 Jul; 413():135598. PubMed ID: 36753785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]