These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29035541)

  • 1. Hydration Phase Diagram of Clay Particles from Molecular Simulations.
    Honorio T; Brochard L; Vandamme M
    Langmuir; 2017 Nov; 33(44):12766-12776. PubMed ID: 29035541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility of nanolayers and stacks: implications in the nanostructuration of clays.
    Honorio T; Brochard L; Vandamme M; Lebée A
    Soft Matter; 2018 Sep; 14(36):7354-7367. PubMed ID: 30187051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling aqueous solubility of sodium chloride in clays at thermodynamic conditions of hydraulic fracturing by molecular simulations.
    Moučka F; Svoboda M; Lísal M
    Phys Chem Chem Phys; 2017 Jun; 19(25):16586-16599. PubMed ID: 28613298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores.
    Yang G; Neretnieks I; Holmboe M
    J Chem Phys; 2017 Aug; 147(8):084705. PubMed ID: 28863548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energy, energy, and entropy of swelling in Cs-, Na-, and Sr-montmorillonite clays.
    Whitley HD; Smith DE
    J Chem Phys; 2004 Mar; 120(11):5387-95. PubMed ID: 15267412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drained and undrained heat capacity of swelling clays.
    Honorio T; Brochard L
    Phys Chem Chem Phys; 2022 Jun; 24(24):15003-15014. PubMed ID: 35687497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion exchange selectivity in clay is controlled by nanoscale chemical-mechanical coupling.
    Whittaker ML; Lammers LN; Carrero S; Gilbert B; Banfield JF
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):22052-22057. PubMed ID: 31619569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo molecular simulation of the hydration of K-montmorillonite at 353 K and 625 bar.
    Chávez Mde L; de Pablo L; de Pablo JJ
    Langmuir; 2004 Nov; 20(24):10764-70. PubMed ID: 15544414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane aqueous fluids in montmorillonite clay interlayer under near-surface geological conditions: a grand canonical Monte Carlo and molecular dynamics simulation study.
    Rao Q; Leng Y
    J Phys Chem B; 2014 Sep; 118(37):10956-65. PubMed ID: 25167085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility of Na and Cs on montmorillonite surface under partially saturated conditions.
    Churakov SV
    Environ Sci Technol; 2013 Sep; 47(17):9816-23. PubMed ID: 23909661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A meso-scale model of clay matrix: the role of hydration transitions in geomechanical behavior.
    Asadi F; Zhu HX; Vandamme M; Roux JN; Brochard L
    Soft Matter; 2022 Oct; 18(41):7931-7948. PubMed ID: 36214381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures.
    Titiloye JO; Skipper NT
    J Colloid Interface Sci; 2005 Feb; 282(2):422-7. PubMed ID: 15589548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing Transition States during the Hydration of Clay Minerals.
    Ho TA; Criscenti LJ; Greathouse JA
    J Phys Chem Lett; 2019 Jul; 10(13):3704-3709. PubMed ID: 31244275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular adhesion at clay nanocomposite interfaces depends on counterion hydration-molecular dynamics simulation of montmorillonite/xyloglucan.
    Wang Y; Wohlert J; Bergenstråhle-Wohlert M; Kochumalayil JJ; Berglund LA; Tu Y; Ågren H
    Biomacromolecules; 2015 Jan; 16(1):257-65. PubMed ID: 25389796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Catalytic Microparticles with Droplets Formed by Phase Coexistence: Adsorption and Activity of Natural Clays at the Aqueous/Aqueous Interface.
    Pir Cakmak F; Keating CD
    Sci Rep; 2017 Jun; 7(1):3215. PubMed ID: 28607355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights.
    Gonçalvès J; Trémosa J
    J Colloid Interface Sci; 2010 Feb; 342(1):166-74. PubMed ID: 19914632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cation size on swelling pressure and free energy of mica pores.
    Adapa S; Malani A
    J Colloid Interface Sci; 2021 Oct; 599():694-705. PubMed ID: 33989927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption isotherms of water on mica: redistribution and film growth.
    Malani A; Ayappa KG
    J Phys Chem B; 2009 Jan; 113(4):1058-67. PubMed ID: 19123830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration of a synthetic clay with tetrahedral charges: a multidisciplinary experimental and numerical study.
    Rinnert E; Carteret C; Humbert B; Fragneto-Cusani G; Ramsay JD; Delville A; Robert JL; Bihannic I; Pelletier M; Michot LJ
    J Phys Chem B; 2005 Dec; 109(49):23745-59. PubMed ID: 16375356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.
    Bourg IC; Ajo-Franklin JB
    Acc Chem Res; 2017 Sep; 50(9):2067-2074. PubMed ID: 28862427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.