BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29035567)

  • 1. Hit-to-Lead Optimization and Discovery of 5-((5-([1,1'-Biphenyl]-4-yl)-6-chloro-1H-benzo[d]imidazol-2-yl)oxy)-2-methylbenzoic Acid (MK-3903): A Novel Class of Benzimidazole-Based Activators of AMP-Activated Protein Kinase.
    Lan P; Romero FA; Wodka D; Kassick AJ; Dang Q; Gibson T; Cashion D; Zhou G; Chen Y; Zhang X; Zhang A; Li Y; Trujillo ME; Shao Q; Wu M; Xu S; He H; MacKenna D; Staunton J; Chapman KT; Weber A; Sebhat IK; Makara GM
    J Med Chem; 2017 Nov; 60(21):9040-9052. PubMed ID: 29035567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators.
    Babkov DA; Zhukowskaya ON; Borisov AV; Babkova VA; Sokolova EV; Brigadirova AA; Litvinov RA; Kolodina AA; Morkovnik AS; Sochnev VS; Borodkin GS; Spasov AA
    Bioorg Med Chem Lett; 2019 Sep; 29(17):2443-2447. PubMed ID: 31358465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery and evaluation of 4-(2-(4-chloro-1H-pyrazol-1-yl)ethylamino)-3-(6-(1-(3-fluoropropyl)piperidin-4-yl)-4-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-695735), an orally efficacious inhibitor of insulin-like growth factor-1 receptor kinase with broad spectrum in vivo antitumor activity.
    Velaparthi U; Wittman M; Liu P; Carboni JM; Lee FY; Attar R; Balimane P; Clarke W; Sinz MW; Hurlburt W; Patel K; Discenza L; Kim S; Gottardis M; Greer A; Li A; Saulnier M; Yang Z; Zimmermann K; Trainor G; Vyas D
    J Med Chem; 2008 Oct; 51(19):5897-900. PubMed ID: 18763755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel benzimidazole derivatives as highly potent AMPK activators with anti-diabetic profiles.
    Tamura Y; Morita I; Hinata Y; Kojima E; Sasaki Y; Wada T; Asano M; Fujioka M; Hayasaki-Kajiwara Y; Iwasaki T; Matsumura K
    Bioorg Med Chem Lett; 2023 Jan; 79():129059. PubMed ID: 36402454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of 3,5-Dimethylpyridin-4(1H)-one Derivatives as Activators of AMP-Activated Protein Kinase (AMPK).
    Kuramoto K; Sawada Y; Ishibashi N; Yamada T; Nagashima T; Shin T
    Chem Pharm Bull (Tokyo); 2020; 68(1):77-90. PubMed ID: 31902903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizoma Anemarrhenae extract ameliorates hyperglycemia and insulin resistance via activation of AMP-activated protein kinase in diabetic rodents.
    Han J; Yang N; Zhang F; Zhang C; Liang F; Xie W; Chen W
    J Ethnopharmacol; 2015 Aug; 172():368-76. PubMed ID: 26162543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.
    Wang M; Li S; Wang F; Zou J; Zhang Y
    Mol Med Rep; 2018 Jun; 17(6):8339-8348. PubMed ID: 29658605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low molecular weight fucoidan improves endoplasmic reticulum stress-reduced insulin sensitivity through AMP-activated protein kinase activation in L6 myotubes and restores lipid homeostasis in a mouse model of type 2 diabetes.
    Jeong YT; Kim YD; Jung YM; Park DC; Lee DS; Ku SK; Li X; Lu Y; Chao GH; Kim KJ; Lee JY; Baek MC; Kang W; Hwang SL; Chang HW
    Mol Pharmacol; 2013 Jul; 84(1):147-57. PubMed ID: 23658008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and biological evaluation of benzimidazole derivatives as potent AMP-activated protein kinase activators.
    Charton J; Girault-Mizzi S; Debreu-Fontaine MA; Foufelle F; Hainault I; Bizot-Espiard JG; Caignard DH; Sergheraert C
    Bioorg Med Chem; 2006 Jul; 14(13):4490-518. PubMed ID: 16513356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway.
    Zheng T; Yang X; Wu D; Xing S; Bian F; Li W; Chi J; Bai X; Wu G; Chen X; Zhang Y; Jin S
    Br J Pharmacol; 2015 Jul; 172(13):3284-301. PubMed ID: 25754463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antidiabetic activity of perylenequinonoid-rich extract from Shiraia bambusicola in KK-Ay mice with spontaneous type 2 diabetes mellitus.
    Huang M; Zhao P; Xiong M; Zhou Q; Zheng S; Ma X; Xu C; Yang J; Yang X; Zhang TC
    J Ethnopharmacol; 2016 Sep; 191():71-81. PubMed ID: 27286915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of Novel Anti-Diabetic Drugs by Targeting Lipid Metabolism.
    Zhou X; Xu J; Shi Y; Ye JM
    Curr Drug Targets; 2015; 16(12):1372-80. PubMed ID: 25706109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and translation of a target engagement marker for AMP-activated protein kinase (AMPK).
    Grempler R; Wolff M; Simon E; Schmid R; Eisele C; Rieber K; Fischer E; Mettel S; Gabrielyan O; Delic D; Luippold G; Redeman N
    PLoS One; 2018; 13(5):e0197849. PubMed ID: 29799853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts.
    Schindler M; Pendzialek M; Grybel KJ; Seeling T; Gürke J; Fischer B; Navarrete Santos A
    Hum Reprod; 2017 Jul; 32(7):1382-1392. PubMed ID: 28472298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel indole derivative compound GY3 improves glucose and lipid metabolism via activation of AMP-activated protein kinase pathway.
    Si M; Yan Y; Tang L; Wu H; Yang B; He Q; Wu H
    Eur J Pharmacol; 2013 Jan; 698(1-3):480-8. PubMed ID: 23085267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose surges damage hepatic adenosyl-monophosphate-dependent kinase and lead to increased lipogenesis and hepatic insulin resistance.
    Gugliucci A
    Med Hypotheses; 2016 Aug; 93():87-92. PubMed ID: 27372863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling.
    So WY; Leung PS
    Int J Biochem Cell Biol; 2016 Sep; 78():237-247. PubMed ID: 27452313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting AMPK Signaling in the Liver: Implications for Obesity and Type 2 Diabetes Mellitus.
    Wang D; Yang L; Liu Y
    Curr Drug Targets; 2022; 23(11):1057-1071. PubMed ID: 36028937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.
    Saito T; Nishida M; Saito M; Tanabe A; Eitsuka T; Yuan SH; Ikekawa N; Nishida H
    Nutr Res; 2016 Oct; 36(10):1090-1097. PubMed ID: 27865350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and evaluation of biphenyl derivatives of 2-iminobenzimidazoles as prototype dual PTP1B inhibitors and AMPK activators with in vivo antidiabetic activity.
    Babkov DA; Zhukovskaya ON; Brigadirova AA; Prilepskaya DR; Kolodina AA; Abbas AHS; Morkovnik AS; Sobhia ME; Ghosh K; Spasov AA
    Chem Biol Drug Des; 2023 Apr; 101(4):896-914. PubMed ID: 36546307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.