BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29035587)

  • 1. Computer-Aided Stroke-by-Stroke Visualization of Actual and Target Power Allows for Continuously Increasing Ramp Tests on Wind-Braked Rowing Ergometers.
    Treff G; Winkert K; Machus K; Steinacker JM
    Int J Sports Physiol Perform; 2018 Jul; 13(6):729-734. PubMed ID: 29035587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical rower: Construction, validity, and reliability of a test rig for wind braked rowing ergometers.
    Mentz L; Engleder T; Schulz G; Winkert K; Steinacker JM; Treff G
    J Biomech; 2020 Jun; 106():109833. PubMed ID: 32517994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical power during an incremental test can be estimated from 2000-m rowing ergometer performance.
    Turnes T; Possamai LT; Penteado Dos Santos R; de Aguiar RA; Ribeiro G; Caputo F
    J Sports Med Phys Fitness; 2020 Feb; 60(2):214-219. PubMed ID: 31663313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Varying the Step Duration on the Determination of Lactate Thresholds in Elite Rowers.
    Bourdon PC; Woolford SM; Buckley JD
    Int J Sports Physiol Perform; 2018 Jul; 13(6):687-693. PubMed ID: 29035635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of physiological responses to rowing on friction-loaded and air-braked ergometers.
    Mahony N; Donne B; O'Brien M
    J Sports Sci; 1999 Feb; 17(2):143-9. PubMed ID: 10069271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Measurement of VO2 max with 2 rowing ergometers on the water in a skiff].
    Chénier D; Léger L
    Can J Sport Sci; 1991 Dec; 16(4):258-63. PubMed ID: 1663827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of breathing an ambient low-density, hyperoxic gas on the perceived effort of breathing and maximal performance of exercise in well-trained athletes.
    Ansley L; Petersen D; Thomas A; St Clair Gibson A; Robson-Ansley P; Noakes TD
    Br J Sports Med; 2007 Jan; 41(1):2-7. PubMed ID: 17062658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Maximal Rowing-Ergometer Protocol to Predict Maximal Oxygen Uptake in Female Rowers.
    Mazza OB; Gam S; Kolind MEI; Kiær C; Donstrup C; Jensen K
    Int J Sports Physiol Perform; 2023 Aug; 18(8):861-865. PubMed ID: 37290764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Prolonged Rowing on Fixed and Free-floating Ergometers in Competitive Rowers.
    Kerhervé HA; Chatel B; Reboah S; Rossi J; Samozino P; Messonnier LA
    Int J Sports Med; 2018 Oct; 39(11):840-845. PubMed ID: 30130813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of ramp rate on VO2peak and "excess" VO2 during arm crank ergometry.
    Smith PM; Amaral I; Doherty M; Price MJ; Jones AM
    Int J Sports Med; 2006 Aug; 27(8):610-6. PubMed ID: 16874587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparison of Physiological Response to Incremental Testing on Stationary and Dynamic Rowing Ergometers.
    Boland M; Crotty NM; Mahony N; Donne B; Fleming N
    Int J Sports Physiol Perform; 2022 Apr; 17(4):515-522. PubMed ID: 34983019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue.
    Day JR; Rossiter HB; Coats EM; Skasick A; Whipp BJ
    J Appl Physiol (1985); 2003 Nov; 95(5):1901-7. PubMed ID: 12857763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power responses of a rowing ergometer: mechanical sensors vs. Concept2 measurement system.
    Boyas S; Nordez A; Cornu C; Guével A
    Int J Sports Med; 2006 Oct; 27(10):830-3. PubMed ID: 16612738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Maximal Rowing Ergometer Protocol to Predict Maximal Oxygen Uptake.
    Jensen K; Frydkjær M; Jensen NMB; Bannerholt LM; Gam S
    Int J Sports Physiol Perform; 2021 Mar; 16(3):382-386. PubMed ID: 33401243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Conconi test: a controversial concept for the determination of the anaerobic threshold in young rowers.
    Bourgois J; Vrijens J
    Int J Sports Med; 1998 Nov; 19(8):553-9. PubMed ID: 9877147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of step-wise and ramp-wise incremental rowing exercise tests and 2000-m rowing ergometer performance.
    Ingham SA; Pringle JS; Hardman SL; Fudge BW; Richmond VL
    Int J Sports Physiol Perform; 2013 Mar; 8(2):123-9. PubMed ID: 22868448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a Verification Test for Determination of V[Combining Dot Above]O2max in Sedentary Adults With Obesity.
    Sawyer BJ; Tucker WJ; Bhammar DM; Gaesser GA
    J Strength Cond Res; 2015 Dec; 29(12):3432-8. PubMed ID: 26382135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Feedback Type and Personality on 2,000-m Ergometer Performance in Female Varsity Collegiate Rowers.
    Stine KA; Moxey JR; Gilbertson NM; Malin SK; Weltman AL
    J Strength Cond Res; 2019 Aug; 33(8):2170-2176. PubMed ID: 30703070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of step and ramp type protocols on the attainment of peak physiological responses during arm crank ergometry.
    Smith PM; Doherty M; Drake D; Price MJ
    Int J Sports Med; 2004 Nov; 25(8):616-21. PubMed ID: 15532006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors of Rowing Ergometer Performance in High-Level Female Rowers.
    Bourdin M; Lacour JR; Imbert C; Messonnier LA
    Int J Sports Med; 2017 Nov; 38(13):1023-1028. PubMed ID: 28965342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.