These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 29035627)
1. METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice. Yamauchi T; Fukazawa A; Nakazono M Plant Signal Behav; 2017 Nov; 12(11):e1388976. PubMed ID: 29035627 [TBL] [Abstract][Full Text] [Related]
2. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. Yamauchi T; Yoshioka M; Fukazawa A; Mori H; Nishizawa NK; Tsutsumi N; Yoshioka H; Nakazono M Plant Cell; 2017 Apr; 29(4):775-790. PubMed ID: 28351990 [TBL] [Abstract][Full Text] [Related]
3. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562 [TBL] [Abstract][Full Text] [Related]
4. A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots. Yamauchi T; Tanaka A; Tsutsumi N; Inukai Y; Nakazono M Plants (Basel); 2020 May; 9(5):. PubMed ID: 32403344 [TBL] [Abstract][Full Text] [Related]
5. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Yamauchi T; Rajhi I; Nakazono M Plant Signal Behav; 2011 May; 6(5):759-61. PubMed ID: 21502817 [TBL] [Abstract][Full Text] [Related]
6. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. Rajhi I; Yamauchi T; Takahashi H; Nishiuchi S; Shiono K; Watanabe R; Mliki A; Nagamura Y; Tsutsumi N; Nishizawa NK; Nakazono M New Phytol; 2011 Apr; 190(2):351-68. PubMed ID: 21091694 [TBL] [Abstract][Full Text] [Related]
7. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Parlanti S; Kudahettige NP; Lombardi L; Mensuali-Sodi A; Alpi A; Perata P; Pucciariello C Ann Bot; 2011 Jun; 107(8):1335-43. PubMed ID: 21489969 [TBL] [Abstract][Full Text] [Related]
8. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325 [TBL] [Abstract][Full Text] [Related]
9. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots. Yamauchi T; Shiono K; Nagano M; Fukazawa A; Ando M; Takamure I; Mori H; Nishizawa NK; Kawai-Yamada M; Tsutsumi N; Kato K; Nakazono M Plant Physiol; 2015 Sep; 169(1):180-93. PubMed ID: 26036614 [TBL] [Abstract][Full Text] [Related]
10. Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Xu QT; Yang L; Zhou ZQ; Mei FZ; Qu LH; Zhou GS Planta; 2013 Nov; 238(5):969-82. PubMed ID: 23975011 [TBL] [Abstract][Full Text] [Related]
11. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. Yamauchi T; Nakazono M Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932 [TBL] [Abstract][Full Text] [Related]
12. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress. Basu S; Kumari S; Kumar A; Shahid R; Kumar S; Kumar G Physiol Plant; 2021 Jun; 172(2):963-975. PubMed ID: 33826753 [TBL] [Abstract][Full Text] [Related]
13. Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots. Joshi R; Kumar P Physiol Mol Biol Plants; 2012 Jan; 18(1):1-9. PubMed ID: 23573035 [TBL] [Abstract][Full Text] [Related]
14. Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Yamauchi T; Tanaka A; Inahashi H; Nishizawa NK; Tsutsumi N; Inukai Y; Nakazono M Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20770-20775. PubMed ID: 31548376 [TBL] [Abstract][Full Text] [Related]
15. Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging. Yamauchi T; Abe F; Tsutsumi N; Nakazono M Front Plant Sci; 2019; 10():259. PubMed ID: 31024577 [TBL] [Abstract][Full Text] [Related]
16. Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency. Pujol V; Wissuwa M BMC Res Notes; 2018 Jan; 11(1):60. PubMed ID: 29357942 [TBL] [Abstract][Full Text] [Related]
17. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Wong HL; Sakamoto T; Kawasaki T; Umemura K; Shimamoto K Plant Physiol; 2004 Jul; 135(3):1447-56. PubMed ID: 15220467 [TBL] [Abstract][Full Text] [Related]
18. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). Hu LY; Li D; Sun K; Cao W; Fu WQ; Zhang W; Dai CC Plant Physiol Biochem; 2018 Sep; 130():367-376. PubMed ID: 30055345 [TBL] [Abstract][Full Text] [Related]
19. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. Kumar G; Kushwaha HR; Panjabi-Sabharwal V; Kumari S; Joshi R; Karan R; Mittal S; Pareek SL; Pareek A BMC Plant Biol; 2012 Jul; 12():107. PubMed ID: 22780875 [TBL] [Abstract][Full Text] [Related]
20. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Yamauchi T; Watanabe K; Fukazawa A; Mori H; Abe F; Kawaguchi K; Oyanagi A; Nakazono M J Exp Bot; 2014 Jan; 65(1):261-73. PubMed ID: 24253196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]