BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29035627)

  • 1. METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice.
    Yamauchi T; Fukazawa A; Nakazono M
    Plant Signal Behav; 2017 Nov; 12(11):e1388976. PubMed ID: 29035627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions.
    Yamauchi T; Yoshioka M; Fukazawa A; Mori H; Nishizawa NK; Tsutsumi N; Yoshioka H; Nakazono M
    Plant Cell; 2017 Apr; 29(4):775-790. PubMed ID: 28351990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.
    Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M
    Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots.
    Yamauchi T; Tanaka A; Tsutsumi N; Inukai Y; Nakazono M
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32403344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species.
    Yamauchi T; Rajhi I; Nakazono M
    Plant Signal Behav; 2011 May; 6(5):759-61. PubMed ID: 21502817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses.
    Rajhi I; Yamauchi T; Takahashi H; Nishiuchi S; Shiono K; Watanabe R; Mliki A; Nagamura Y; Tsutsumi N; Nishizawa NK; Nakazono M
    New Phytol; 2011 Apr; 190(2):351-68. PubMed ID: 21091694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance.
    Parlanti S; Kudahettige NP; Lombardi L; Mensuali-Sodi A; Alpi A; Perata P; Pucciariello C
    Ann Bot; 2011 Jun; 107(8):1335-43. PubMed ID: 21489969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions.
    Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M
    Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots.
    Yamauchi T; Shiono K; Nagano M; Fukazawa A; Ando M; Takamure I; Mori H; Nishizawa NK; Kawai-Yamada M; Tsutsumi N; Kato K; Nakazono M
    Plant Physiol; 2015 Sep; 169(1):180-93. PubMed ID: 26036614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots.
    Xu QT; Yang L; Zhou ZQ; Mei FZ; Qu LH; Zhou GS
    Planta; 2013 Nov; 238(5):969-82. PubMed ID: 23975011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots.
    Yamauchi T; Nakazono M
    Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress.
    Basu S; Kumari S; Kumar A; Shahid R; Kumar S; Kumar G
    Physiol Plant; 2021 Jun; 172(2):963-975. PubMed ID: 33826753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots.
    Joshi R; Kumar P
    Physiol Mol Biol Plants; 2012 Jan; 18(1):1-9. PubMed ID: 23573035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling.
    Yamauchi T; Tanaka A; Inahashi H; Nishizawa NK; Tsutsumi N; Inukai Y; Nakazono M
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20770-20775. PubMed ID: 31548376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging.
    Yamauchi T; Abe F; Tsutsumi N; Nakazono M
    Front Plant Sci; 2019; 10():259. PubMed ID: 31024577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency.
    Pujol V; Wissuwa M
    BMC Res Notes; 2018 Jan; 11(1):60. PubMed ID: 29357942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice.
    Wong HL; Sakamoto T; Kawasaki T; Umemura K; Shimamoto K
    Plant Physiol; 2004 Jul; 135(3):1447-56. PubMed ID: 15220467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.).
    Hu LY; Li D; Sun K; Cao W; Fu WQ; Zhang W; Dai CC
    Plant Physiol Biochem; 2018 Sep; 130():367-376. PubMed ID: 30055345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging.
    Kumar G; Kushwaha HR; Panjabi-Sabharwal V; Kumari S; Joshi R; Karan R; Mittal S; Pareek SL; Pareek A
    BMC Plant Biol; 2012 Jul; 12():107. PubMed ID: 22780875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions.
    Yamauchi T; Watanabe K; Fukazawa A; Mori H; Abe F; Kawaguchi K; Oyanagi A; Nakazono M
    J Exp Bot; 2014 Jan; 65(1):261-73. PubMed ID: 24253196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.