These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29035712)

  • 1. Process integration for material synthesis from a deactivated catalyst: Studies on the interaction of metal ions between two immiscible phases.
    Mishra D; Sahu KK; Agrawal A
    J Hazard Mater; 2018 Feb; 344():169-178. PubMed ID: 29035712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective extraction and separation of Li, Co and Mn from leach liquor of discarded lithium ion batteries (LIBs).
    Choubey PK; Dinkar OS; Panda R; Kumari A; Jha MK; Pathak DD
    Waste Manag; 2021 Feb; 121():452-457. PubMed ID: 33358248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of manganese and zinc from waste Zn-C cell powder: Mutual separation of Mn(II) and Zn(II) from leach liquor by solvent extraction technique.
    Biswas RK; Habib MA; Karmakar AK; Tanzin S
    Waste Manag; 2016 May; 51():149-156. PubMed ID: 26456667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-manufacture of cobalt-manganese-bromide as a liquid catalyst from spent catalyst containing cobalt generated from petrochemical processes via hydrometallurgy.
    Joo SH; Shin DJ; Oh CH; Wang JP; Shin SM
    J Hazard Mater; 2016 Nov; 318():24-31. PubMed ID: 27391861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.
    Reddy BR; Raju B; Lee JY; Park HK
    J Hazard Mater; 2010 Aug; 180(1-3):253-8. PubMed ID: 20435411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.
    Yang Y; Xu S; He Y
    Waste Manag; 2017 Jun; 64():219-227. PubMed ID: 28336333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy.
    Ahn NK; Shim HW; Kim DW; Swain B
    Waste Manag; 2020 Mar; 104():254-261. PubMed ID: 31991266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process development for the separation and recovery of Mo and Co from chloride leach liquors of petroleum refining catalyst by solvent extraction.
    Banda R; Sohn SH; Lee MS
    J Hazard Mater; 2012 Apr; 213-214():1-6. PubMed ID: 22336581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental friendly approach for selective extraction and recovery of molybdenum (Mo) from a sulphate mediated spent Ni-Mo/Al
    Parhi PK; Misra PK
    J Environ Manage; 2022 Mar; 306():114474. PubMed ID: 35026717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.
    Chen D; Zhao H; Hu G; Qi T; Yu H; Zhang G; Wang L; Wang W
    J Hazard Mater; 2015 Aug; 294():35-40. PubMed ID: 25840036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on Zn recovery from other metals in the spent mixed batteries through a sequence of hydrometallurgical processes.
    Shin DJ; Joo SH; Oh CH; Wang JP; Park JT; Min DJ; Shin SM
    Environ Technol; 2019 Nov; 40(26):3512-3522. PubMed ID: 29799331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272.
    Park KH; Mohapatra D; Nam CW
    J Hazard Mater; 2007 Sep; 148(1-2):287-95. PubMed ID: 17363155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt products from real waste fractions of end of life lithium ion batteries.
    Pagnanelli F; Moscardini E; Altimari P; Abo Atia T; Toro L
    Waste Manag; 2016 May; 51():214-221. PubMed ID: 26564258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent extraction applied to the recovery of heavy metals from galvanic sludge.
    Silva JE; Paiva AP; Soares D; Labrincha A; Castro F
    J Hazard Mater; 2005 Apr; 120(1-3):113-8. PubMed ID: 15811671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using Aliquat 336.
    Cueva Sola AB; Parhi PK; Lee JY; Kang HN; Jyothi RK
    RSC Adv; 2020 May; 10(34):19736-19746. PubMed ID: 35520398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of hollow fiber membrane contactors for catalyst recovery in the WPO process.
    Ortiz I; Urtiaga A; Abellán MJ; San Román F
    Ann N Y Acad Sci; 2003 Mar; 984():17-28. PubMed ID: 12783807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.
    Biswas RK; Karmakar AK; Kumar SL
    Waste Manag; 2016 May; 51():174-181. PubMed ID: 26564257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.