These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 29035714)
1. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. Ding T; Lin K; Yang M; Bao L; Li J; Yang B; Gan J J Hazard Mater; 2018 Feb; 344():200-209. PubMed ID: 29035714 [TBL] [Abstract][Full Text] [Related]
2. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Ding T; Yang M; Zhang J; Yang B; Lin K; Li J; Gan J J Hazard Mater; 2017 May; 330():127-134. PubMed ID: 28214648 [TBL] [Abstract][Full Text] [Related]
3. Biouptake, toxicity and biotransformation of triclosan in diatom Cyclotella sp. and the influence of humic acid. Ding T; Lin K; Bao L; Yang M; Li J; Yang B; Gan J Environ Pollut; 2018 Mar; 234():231-242. PubMed ID: 29175687 [TBL] [Abstract][Full Text] [Related]
4. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. Chen J; Qu R; Pan X; Wang Z Water Res; 2016 Oct; 103():215-223. PubMed ID: 27459151 [TBL] [Abstract][Full Text] [Related]
5. Toxicity and Metabolic Fate of the Fungicide Carbendazim in the Typical Freshwater Diatom Navicula Species. Ding T; Li W; Li J J Agric Food Chem; 2019 Jun; 67(24):6683-6690. PubMed ID: 31140797 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical simulation of triclosan metabolism and toxicological evaluation. Zhu L; Shao Y; Xiao H; Santiago-Schübel B; Meyer-Alert H; Schiwy S; Yin D; Hollert H; Küppers S Sci Total Environ; 2018 May; 622-623():1193-1201. PubMed ID: 29890587 [TBL] [Abstract][Full Text] [Related]
7. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Dhillon GS; Kaur S; Pulicharla R; Brar SK; Cledón M; Verma M; Surampalli RY Int J Environ Res Public Health; 2015 May; 12(5):5657-84. PubMed ID: 26006133 [TBL] [Abstract][Full Text] [Related]
8. The combined toxicity of silver nanoparticles and typical personal care products in diatom Navicula sp. Wei L; Lin S; Yue Z; Zhang L; Ding T Mar Environ Res; 2023 Sep; 190():106120. PubMed ID: 37531678 [TBL] [Abstract][Full Text] [Related]
9. Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Capdevielle M; Van Egmond R; Whelan M; Versteeg D; Hofmann-Kamensky M; Inauen J; Cunningham V; Woltering D Integr Environ Assess Manag; 2008 Jan; 4(1):15-23. PubMed ID: 18260205 [TBL] [Abstract][Full Text] [Related]
10. Triclosan: its occurrence, fate and effects in the Australian environment. Kookana RS; Ying GG; Waller NJ Water Sci Technol; 2011; 63(4):598-604. PubMed ID: 21330702 [TBL] [Abstract][Full Text] [Related]
11. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Bedoux G; Roig B; Thomas O; Dupont V; Le Bot B Environ Sci Pollut Res Int; 2012 May; 19(4):1044-65. PubMed ID: 22057832 [TBL] [Abstract][Full Text] [Related]
12. Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. Proia L; Morin S; Peipoch M; Romaní AM; Sabater S Sci Total Environ; 2011 Aug; 409(17):3129-37. PubMed ID: 21621820 [TBL] [Abstract][Full Text] [Related]
13. Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as influenced by humic acid and nitrogen species. Ding T; Lin K; Yang B; Yang M; Li J J Hazard Mater; 2019 Oct; 378():120763. PubMed ID: 31207484 [TBL] [Abstract][Full Text] [Related]
14. Aquatic toxicity of triclosan. Orvos DR; Versteeg DJ; Inauen J; Capdevielle M; Rothenstein A; Cunningham V Environ Toxicol Chem; 2002 Jul; 21(7):1338-49. PubMed ID: 12109732 [TBL] [Abstract][Full Text] [Related]
15. Effects of triclosan in the freshwater mussel Dreissena polymorpha: a proteomic investigation. Riva C; Cristoni S; Binelli A Aquat Toxicol; 2012 Aug; 118-119():62-71. PubMed ID: 22522169 [TBL] [Abstract][Full Text] [Related]
16. Influence of multi-walled carbon nanotubes on the toxicity and removal of carbamazepine in diatom Navicula sp. Ding T; Li W; Li J Sci Total Environ; 2019 Dec; 697():134104. PubMed ID: 31487584 [TBL] [Abstract][Full Text] [Related]
17. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms. Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380 [TBL] [Abstract][Full Text] [Related]
18. The pH-dependent toxicity of triclosan on developing zebrafish (Danio rerio) embryos using metabolomics. Fu J; Bae S Aquat Toxicol; 2020 Sep; 226():105560. PubMed ID: 32659603 [TBL] [Abstract][Full Text] [Related]
19. Effects of triclosan on aquatic invertebrates in tropics and the influence of pH on its toxicity on microalgae. Khatikarn J; Satapornvanit K; Price OR; Van den Brink PJ Environ Sci Pollut Res Int; 2018 May; 25(14):13244-13253. PubMed ID: 27543130 [TBL] [Abstract][Full Text] [Related]
20. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification. Li J; Peng J; Zhang Y; Ji Y; Shi H; Mao L; Gao S J Hazard Mater; 2016 Jun; 310():152-60. PubMed ID: 26921508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]