These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29035764)

  • 41. Multiple fluorescence approaches to identify rapid changes in microbial indicators at karst springs.
    Vucinic L; O'Connell D; Dubber D; Coxon C; Gill L
    J Contam Hydrol; 2023 Mar; 254():104129. PubMed ID: 36634484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater.
    Tran NH; Li J; Hu J; Ong SL
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4727-40. PubMed ID: 24352549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polycyclic aromatic hydrocarbons in wastewater, WWTPs effluents and in the recipient waters of Beijing, China.
    Qi W; Liu H; Pernet-Coudrier B; Qu J
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):4254-60. PubMed ID: 23292225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduced nutrient pollution in a rural stream following septic tank upgrade and installation of runoff retention measures.
    Ockenden MC; Quinton JN; Favaretto N; Deasy C; Surridge B
    Environ Sci Process Impacts; 2014 Jul; 16(7):1637-45. PubMed ID: 24686791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges.
    Batt AL; Bruce IB; Aga DS
    Environ Pollut; 2006 Jul; 142(2):295-302. PubMed ID: 16324772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating the polar organic chemical integrative sampler for the monitoring of beta-blockers and hormones in wastewater treatment plant effluents and receiving surface waters.
    Jacquet R; Miège C; Bados P; Schiavone S; Coquery M
    Environ Toxicol Chem; 2012 Feb; 31(2):279-88. PubMed ID: 22069229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of abundance ratios of somatic coliphages and bacteriophages of Bacteroides thetaiotaomicron GA17 for microbial source identification.
    Muniesa M; Lucena F; Blanch AR; Payán A; Jofre J
    Water Res; 2012 Dec; 46(19):6410-8. PubMed ID: 23039916
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sources and drivers of contamination along an urban tropical river (Ciliwung, Indonesia): Insights from microbial DNA, isotopes and water chemistry.
    Duvert C; Priadi CR; Rose AM; Abdillah A; Marthanty DR; Gibb KS; Kaestli M
    Sci Total Environ; 2019 Sep; 682():382-393. PubMed ID: 31125752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Septic tank discharges as multi-pollutant hotspots in catchments.
    Richards S; Paterson E; Withers PJ; Stutter M
    Sci Total Environ; 2016 Jan; 542(Pt A):854-63. PubMed ID: 26556750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial source tracking (MST) in Chattahoochee River National Recreation Area: Seasonal and precipitation trends in MST marker concentrations, and associations with E. coli levels, pathogenic marker presence, and land use.
    McKee BA; Molina M; Cyterski M; Couch A
    Water Res; 2020 Mar; 171():115435. PubMed ID: 31927096
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pollutant sources investigation and remedial strategies development for the Kaoping River Basin, Taiwan.
    Kao CM; Wu FC; Chen KF; Lin TF; Yen YE; Chiang PC
    Water Sci Technol; 2003; 48(7):97-103. PubMed ID: 14653639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of microbiological water quality in the Pettaquamscutt River (Rhode Island, USA) using chemical, molecular and culture-dependent methods.
    Atoyan JA; Herron EM; Amador JA
    Mar Pollut Bull; 2011 Jul; 62(7):1577-83. PubMed ID: 21570698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. crAssphage as a human molecular marker to evaluate temporal and spatial variability in faecal contamination of urban marine bathing waters.
    Sala-Comorera L; Reynolds LJ; Martin NA; Pascual-Benito M; Stephens JH; Nolan TM; Gitto A; O'Hare GMP; O'Sullivan JJ; García-Aljaro C; Meijer WG
    Sci Total Environ; 2021 Oct; 789():147828. PubMed ID: 34052479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Illicit drugs and pharmaceuticals in the environment--forensic applications of environmental data, Part 2: Pharmaceuticals as chemical markers of faecal water contamination.
    Kasprzyk-Hordern B; Dinsdale RM; Guwy AJ
    Environ Pollut; 2009 Jun; 157(6):1778-86. PubMed ID: 19299056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial indicators and molecular markers used to differentiate the source of faecal pollution in the Bogotá River (Colombia).
    Sánchez-Alfonso AC; Venegas C; Díez H; Méndez J; Blanch AR; Jofre J; Campos C
    Int J Hyg Environ Health; 2020 Apr; 225():113450. PubMed ID: 31962274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Base alteration of some heavy metal concentrations on local and seasonal in Bartin River.
    Ucun Ozel H; Ozel HB; Cetin M; Sevik H; Gemici BT; Varol T
    Environ Monit Assess; 2019 Aug; 191(9):594. PubMed ID: 31463814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contamination of estuaries from failing septic tank systems: difficulties in scaling up from monitored individual systems to cumulative impact.
    Geary P; Lucas S
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2132-2144. PubMed ID: 29397513
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quality assessment of water intended for human consumption from Kwanza, Dande and Bengo rivers (Angola).
    Paca JM; Santos FM; Pires JCM; Leitão AA; Boaventura RAR
    Environ Pollut; 2019 Nov; 254(Pt B):113037. PubMed ID: 31454567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A hybrid monitoring and modelling approach to assess the contribution of sources of glyphosate and AMPA in large river catchments.
    Desmet N; Touchant K; Seuntjens P; Tang T; Bronders J
    Sci Total Environ; 2016 Dec; 573():1580-1588. PubMed ID: 27717570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.