BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 29035796)

  • 1. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.
    Park JH; Kim BS; Chon CM
    Chemosphere; 2018 Jan; 191():245-252. PubMed ID: 29035796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.
    Hallberg KB; Johnson DB
    Sci Total Environ; 2005 Feb; 338(1-2):115-24. PubMed ID: 15680632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.
    Park JH; Han YS; Ahn JS
    Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial community composition in iron deposits and manganese crusts formed in riverine environments around the Aso area in Japan.
    Hirano SI; Ito Y; Tanaka S; Nagaoka T; Oyama T
    Res Microbiol; 2020; 171(7):271-280. PubMed ID: 32979473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments.
    Butler BA
    Water Res; 2011 Jan; 45(1):328-36. PubMed ID: 20709348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China.
    Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y
    Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovering iron and sulfate in the form of mineral from acid mine drainage by a bacteria-driven cyclic biomineralization system.
    Wang X; Jiang H; Zheng G; Liang J; Zhou L
    Chemosphere; 2021 Jan; 262():127567. PubMed ID: 32755692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z
    Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese removal processes and geochemical behavior in residues from passive treatment of mine drainage.
    Le Bourre B; Neculita CM; Coudert L; Rosa E
    Chemosphere; 2020 Nov; 259():127424. PubMed ID: 32599383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-oxide precipitation influences microbiome structure in hyporheic zones receiving acid rock drainage.
    Hoagland B; Rasmussen KL; Singha K; Spear JR; Navarre-Sitchler A
    Appl Environ Microbiol; 2024 Mar; 90(3):e0198723. PubMed ID: 38391193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria.
    Hou D; Zhang P; Wei D; Zhang J; Yan B; Cao L; Zhou Y; Luo L
    J Hazard Mater; 2020 Sep; 396():122631. PubMed ID: 32339872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Formation and environmental implications of iron-enriched precipitates derived from natural neutralization of acid mine drainage].
    Zhou YF; Xie Y; Zhou LX
    Huan Jing Ke Xue; 2010 Jun; 31(6):1581-8. PubMed ID: 20698276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic manganese oxides promote metal(loid) remediation by shaping microbial communities in biological aqua crust.
    Wang G; Feng Z; Yin X; Chen D; Zhao N; Yuan Y; Chen C; Liu C; Ao M; Chen L; Chen Z; Yang W; Li D; Morel JL; Chao Y; Wang P; Tang Y; Qiu R; Wang S
    Water Res; 2024 Apr; 253():121287. PubMed ID: 38387264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.
    Sanliyuksel Yucel D; Balci N; Baba A
    Arch Environ Contam Toxicol; 2016 May; 70(4):757-82. PubMed ID: 26987541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biomineralization at hot springs and mineral springs, and their significance in relation to the Earth's history].
    Akai J
    Biol Sci Space; 2000 Dec; 14(4):363-71. PubMed ID: 11589228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial diversity response to geochemical gradient characteristics on AMD from abandoned Dashu pyrite mine in Southwest China.
    Li B; Wang X; Liu G; Zheng L; Cheng C
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74983-74997. PubMed ID: 35648344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).
    Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C
    Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.